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1. Algorithm

To provide a clear understanding of the model, the complete
training procedure of the proposed method is presented in
Algorithm 1.

Algorithm 1 Training process of the proposed method

: Input: dataset X, individual labels )

: Output: updated E”, E* and shared classifier W

. Initialize: Initialize E”, E¥, W, W, and W¢€.
Phase I: Heterogeneous Expert Construction

: for iter = 1to T} do

Optimize E”, EY, W, and W by minimizing the
loss in Eq.(14).

: end for

: Phase II: Collaborative Consistency Learning

: for iter = 1to T do

Building P and P".

Predict cross-modal identity by using W and W7
Generate M., M, M,, by Eq.(4), Eq.(5), Eq.(6).
Optimize E", E¥ and W by minimizing L5/,
15:  Lweak geros,

16: Optimize W, W by minimizing £5;”, Lhomo-
17: Update P? and P" via Eq.(10).

18: end for
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In addition, Figure | compares the recall rate of cross-
modal pseudo-labels before and after incorporating CLAE,
showing a significant improvement in pseudo-label quality.

2. Selection of Hyperparameters

In the loss function of this paper, two hyperparameters, \;
and Ao, are involved. To achieve better model performance,
we conducted a search for the optimal values of A; and Ay
within the interval [0, 1]. As shown in Figure 2, when \;
and Ao are increased from 0 to 0.25, the model performance
reaches its optimum; however, when they exceed 0.25, the

*Corresponding author: Huafeng Li (hfchina99 @163.com).
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Figure 1. Comparison of cross-modal pseudo-label quality on the
SYSU-MMOLI dataset before and after adding CLAE in a weakly
supervised setting, with the x-axis representing training epochs
and the y-axis representing recall rate.
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Figure 2. Effect of different values of \; and A2 on model perfor-
mance in the all search mode of the SYSU-MMOI dataset.

model performance starts to decline. Therefore, in this pa-
per, we set both A\; and A, to 0.25.

3. Analysis of Parameter Settings in Eq. (12)

In the total collaborative consistency loss

»Chomo = wvﬁ;}wmo + wT‘C’;‘Lomo? (1)
we use
. — H(pr—n}) o — H(pv—>r)
" H(prov)+H(pror)' T H(prv)+ H(zg;’“)



to replace manually chosen hyperparameters. To verify

its effectiveness, we conduct an experimental analysis, as

shown in Table 1. Table | summarizes the following cases:

* Case 0 corresponds to the scenario where CLAE is not
used.

¢ Case 1 sets both w, and w, to 0.5.

» Case 2 exchanges the roles of w, and w,- in Eq. (1).

» Case 3 applies the Softmax operation to w, and w, fol-
lowing Eq. (2).

* Case 4 determines w, and w, based on Eq. (2).

Table 1. Influence of different weight settings in Lpomo-

Cases SYSU-MMO1
Rank-1 Rank-10 Rank-20 mAP
0 68.0 95.3 98.4 64.6
1 69.0 954 98.4 65.4
2 68.7 954 98.6 64.9
3 69.8 95.1 98.3 65.8
4 70.4 95.8 98.8 66.6

The results listed in Table 1 show that the model’s recog-
nition performance is relatively low in the absence of CLAE
(Case 0), highlighting its importance. In Case 1, although
assigning equal weights to all experts led to some perfor-
mance improvement, the gain was limited as it failed to dy-
namically adjust weights based on input results. In Case
2, performance was only marginally better than Case 0
due to excessive constraints on low-credibility classifiers.
While Case 3 employed the Softmax operation to mitigate
the impact of credibility on weights, it still yielded subop-
timal performance. In contrast, Case 4 achieved the best
performance by adopting an adaptive adjustment strategy.
These results clearly validate the effectiveness of our adap-
tive weight selection strategy in optimizing strength adjust-
ment.

4. Visualization of Retrieval Results

To further demonstrate the effectiveness of our method, we
present retrieval results on the SYSU-MMO1[3] dataset in
Figure 3. In each retrieval result, green boxes denote cor-
rectly retrieved images matching the query sample, whereas
red boxes indicate incorrect matches. These results clearly
demonstrate that our method effectively enhances the rank-
ing of correct matches and increases their presence in the
top ranks.

5. Experiments on RegDB

We also evaluate our proposed method on the RegDB
[1] dataset, a small-scale visible-infrared person re-
identification benchmark captured using a dual-camera sys-
tem (visible and infrared). It contains 8,240 images from
412 identities, each with 10 pairs of visible and infrared im-
ages. As shown in Table 2, our method achieves excellent
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Figure 3. Visualization of retrieval results on the SYSU-MMO1
dataset: baseline vs. our Method

performance under both the visible-to-infrared and infrared-
to-visible evaluation settings.

Table 2. Comparison of Rank-1 (%) and mAP (%) performances
with the state-of-the-art methods on RegDB dataset.

VIS to IR IR to VIS
Rank-1 mAP | Rank-1 mAP

DPIS [2] 62.3 532 61.5 52.7
AGW [6] 70.1 66.4 70.5 65.9

Methods

GUR [4] 73.9 70.2 75.0 69.9
CAJ [5] 85.0 79.1 84.8 71.8
MUCG [7] 86.9 76.7 83.7 74.1
Ours 86.9 80.1 86.4 80.6

6. Limitations of the Method and Future Work

Despite the effectiveness of the proposed weakly super-
vised cross-modal person ReID method, several limitations
remain. The reliance on modality-specific classification
experts introduces a potential sensitivity to the quality of
single-modal labels. In scenarios where single-modal iden-
tity annotations are noisy or inconsistent, the accuracy of
cross-modal identity correspondence establishment may be
affected. Future work could explore robust learning strate-
gies to mitigate the impact of label noise, such as self-
correction mechanisms or label refinement techniques.
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