p-MoD: Building Mixture-of-Depths MLLMs via Progressive Ratio Decay

Supplementary Material

This supplementary material includes the following sec-

tions:

* In Section A, we provide more experiment results.

* In Section B, we show visualization results of p-MoD to-
ken selection decisions across different layers.

¢ In Section C, we make some further discussions about our
work.

¢ In Section D, we provide more implementation details.

A. More Experiments

A.1. Experiments on Larger Model Size

In Table 8, we compare our method against other to-
ken compression methods on LLaVA-NeXT-13B baseline
model. The results demonstrate that our method signifi-
cantly outperforms other methods on larger model size, val-
idating the scalability of our approach.

A.2. Experiments on Visual Grounding

In Table 9, we compare p-MoD with other token compres-
sion methods on visual grounding benchmarks RefCOCO,
RefCOCO+ and RefCOCOg [20, 52]. Our method signifi-
cantly outperforms other methods, but it still exhibits some
performance drop compared to the baseline model. This
suggests that current token pruning methods still exhibit
limitations on visual grounding, which might be one of the
major challenges that future works in this field should aim
to address.

A.3. Compairson with More Relate Works

In addition to comparing p-MoD against three strong token
compression methods in Table 5, we provide comparison
with more methods in Table 10. Under the same token com-
pression ratio, p-MoD demonstrates the best overall perfor-
mance on our comprehensive evaluation suite covering 15
benchmarks.

A.4. Comparison with v-MoD

Concurrent to our work, v-MoD [33] also propose to inte-
grate Mixture-of-Depths mechanism into MLLMs. In this
section, we first analyze the difference between our ap-
proach and theirs. Then we conduct experiments to show
that our p-MoD approach outperforms y-MoD.

The core design of v-MoD is computing attention map
(ARank) on some samples to identify which layers MoD
can be applied to. In contrast, p-MoD can be effectively ap-
plied to every layer thanks to our TanhNorm and STRing
modules. Furthermore, we propose PRD strategy to pro-

AVG over

Method DocVQA ChartQA SEED GQA 15 Tasks*
+MQT 58.6 54.6 68.8 64.2 63.0
+ FastV 70.2 64.7 70.8 64.7 65.7
+ LLaVolta 70.0 61.7 70.5 64.7 65.0
+ p-MoD 723 66.2 71.6 65.0 66.0

Table 8. Experiments on LLaVA-NeXT-13B. Our method signif-
icantly outperforms other methods on larger baseline model, val-
idating the scalability of our approach. *Average is computed on
all 15 benchmarks used in Table 1 and 2.

Method ‘ RefCOCO Val RefCOCO+ Val RefCOCOg Val
+MQT 68.77 59.07 63.52
+LLaVolta 79.96 70.89 76.79
+FastV 73.83 64.90 69.78
+p-MoD 80.23 70.94 76.96

Table 9. Experiments on Visual Grounding. Our method
significantly outperforms other methods on visual grounding
benchmarks RefCOCO, RefCOCO+ and RefCOCOg. We report
ACC@0.5 metric on the validation sets of these benchmarks.

AVG over
Model DocVQA ChartQA SEED GQA 15 tasks*
\ \

+ Sparse VLM [57] 67.2 52.8 68.1 62.6 62.3
+ VisionZip [49] 65.5 50.3 674  61.1 61.2
+ PyramidDrop [48] 66.5 533 67.5 61.9 61.9
+ FasterVLM [56] 65.9 47.7 680 614 61.4
+ FreeVideoLLM [12] 55.5 36.0 689 593 57.6
+iLLaVA [15] 64.5 56.6 65.5 61.5 59.3
+ LLaVA-PruMerge [42] 58.0 44.6 674 612 60.0
+ p-MoD 70.0 61.8 69.0 63.3 63.4

Table 10. Comparison with more vision token compression
methods. In addition to the comparison in Table 5, we make a
fair comparison between p-MoD and more vision token compres-
sion methods by controlling the average token retention ratio. Our
methods achieves the best overall performance across 15 bench-
marks. *Average is computed on all 15 benchmarks used in Table
1 and 2.

gressively reduce the token retention ratio layer by layer,
which significantly boosts performance and efficiency.

In Table 11, we compare our method with y-MoD on
LLaVA-v1.5-7B baseline. y-MoD utilizes higher token re-
tention ratio than p-MoD (60+% vs 53%), but p-MoD still
outperforms it by a large margin. Note that we are unable to
compare both methods on LLaVA-NeXT, as v-MoD’s code
implementation does not support LLaVA-NeXT.



Model Keep Doc Info Chat Text RW SE PO MM Al VQA OK MM G S MM AVG
Ratiol | VQA VQA QA VQA QA ED PE MU 2D v2 VQA E QA QA
+ v-MoD ‘>60% 204 215 181 475 537 663 86.6 350 551 771 513 13770 62.1 672 599 | 52.7
+p-MoD 53.7% | 27.6 26.8 16.8 448 557 66.5 855 363 562 769 560 1482.8 622 693 654 | 54.7
Table 11. Comparison with concurrent work v-MoD. All models are of 7B parameter scale.
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Figure 6. Visualization of token selection decisions across different p-MoD layers. The horizontal axis denotes the token indexes, and
the vertical axis denotes the layer indexes. It can be observed that every p-MoD layer independently selects important and informative

tokens.

B. Visualization of Token Selection Decisions

Figure 6 visualizes the token selection decisions of p-MoD
across different layers. The horizontal axis denotes the to-
ken indexes, and the vertical axis denotes the layer indexes.
It can be observed that every layer select different tokens
to process, and every token is selected by different p-MoD
layers. This demonstrates that every p-MoD layer indepen-
dently selects important and informative tokens, without de-
grading into selecting a same set of tokens across differ-
ent layers, which is identical to dropping tokens instead of
layer-wise selection.

C. Further Discussions

C.1. Discussion on OCR Performance

In our experiments, we found that all token compression
methods inevitably cause a significant performance drop on
OCR-related benchmarks compared to other benchmarks.
The main challenge we aim to address throughout the
progress of this work is to mitigate this issue as much as

possible. Experiment results in this paper show that our
method achieves the least performance drop on OCR tasks
compared to others.

C.2. Explanation on Training Overflow Problem

In Section 3.2.1, we mention that TanhNorm ensures train-
ing and inference stability. Acoordingly, we observe over-
flow issues in the ablation study on TanhNorm in Table 3.
In this Section, we give a detailed explanation on the causes
of overflow.

As illustrated in Equation 2, scaling a token by exces-
sively large weights w; across multiple LLM layers may
cause floating-point overflow. For TanhNorm with o = 1
(Table 3 Row 4), large w; makes X| = « tanh(w;)T(X;)+
X, approximate scaling the token X; by 2. Repeating this
for the same token across multiple layers causes overflow.
The same problem arises for vanilla MoD (Table 3 Row 1).
In this case, no normalization is applied to constrain the
range of the weights, making it easier to produce extreme
values and result in numerical overflow.



Connector+LLM+MoD: 2e-5

Name Resolution Train Trainable Module& Data Batch

4 Stage Learning Rate Size

p-MoD-LLaVA-v1.5 ‘ (336.336) ‘ PT ‘ Connector: le-3 ‘ 558K ‘ 256

| | SFT | Connector+LLM+MoD: 2e-5 | 665K | 128

] ) | 336 x [(2,2), | PT | Connector: le-3 | 558K | 256
p-MoD-LLaVA-NeXT: =1 5) 2.1y, VIT: 26-6 (baseline)

(13),3.)] | SFT 779K | 128

Table 12. Detailed training configuration. PT stands for pre-training. SFT stands for supervised fine-tuning. During fine-tuning, the
vision encoder of the baseline LLaVA-NeXT model is updated, consistent with the original LLaVA-NeXT model[28]. We freeze the vision
encoder of our p-MoD-LLaVA-NeXT model for all experiments to reduce training cost.

C.3. Limitations

One limitation of our work is that p-MoD is only exper-
imented on LLaVA-1.5 and LLaVA-NeXT models, which
focus on single-image understanding tasks. We believe that
our approach has the potential to achieve more remarkable
results when applied on tasks that handle a larger number
of vision tokens, such as multi-image and long video un-
derstanding. We leave the exploration of p-MoD on other
vision tasks to future research.

Another limitation is that p-MoD is a trainable method,
designed for training a new MLLM from scratch with re-
duced training and inference costs. When being applied to
trained MLLMs, it requires continual fine-tuning the model.
It is not suitable for training-free scenarios.

D. More Implementation Details

D.1. Detailed Training Recipe

Our detailed training recipe of p-MoD models is shown in
Table 12. LLaVA-1.5 employs a fixed input resolution of
336x336, while LLaVA-NeXT supports a pre-defined set
of different resolutions (up to 672x672). Both the LLaVA-
v1.5 models and the LLaVA-NeXT models go through the
same pre-training stage, where the MLP connector module
is trained on 558K image caption data [29] with a learning
rate of le-3 and a batch size of 256.

During supervised fine-tuning, LLaVA-1.5 is trained on
665K instruction-tuning data [27], while LLaVA-NeXT is
trained on a larger set of 779K data’. The vision encoder
of the LLaVA-NeXT baseline model is updated for fine-
tuning. For our p-MoD-LLaVA-NeXT model, we freeze the
vision encoder to save training time, as the available GPU
resources are limited. When measuring the training GPU
hours reported in Table 7, we freeze the vision encoder for
both baseline and p-MoD models to ensure fair comparison.

“https://huggingface.co/datasets/Imms-lab/LLaVA-NeXT-Data

D.2. Hardware and Hyperparameters

We train all our models on 8§ NVIDIA RTX A6000 GPUs.
The inference efficiency metrics reported in Section 4.5 are
measured on a single A6000 GPU. By default, we set the
gating factor « in TanhNorm to 0.2, and the shift factor 3
in PRD to 0.5.

Due to computational constraints, we mainly use 7B
models in our experiments. Experiments on 13B models
are show in Table 8 and Section A.1.

D.3. Details on the PRD schedule.

We find it challenging for MoD layers to learn to predict
meaningful weights when the token retention ratio is set to
an extremely large or small value. To address this issue, we
constrain the range of the token retention ratio [?; within
a predefined maximum and minimum threshold. If R, ex-
ceeds the maximum threshold, we set the token retention
ratio to 1 so that the MoD module is not applied to the [-
th layer. If R; falls below the minimum threshold, the to-
ken retention ratio for the [-th layer is set to the minimum
threshold:

1, if R; > max
R; =< Ry, if min < R < max . (6)
min, if R < min
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