Supplementary Material for DeepMesh: Auto-Regressive Artist-mesh Creation
with Reinforcement Learning

Tokenized Sequence

ENEIENGEIENE)

P3 q

e, — o0ooonon
.....
Original Mesh

Coordinates Scaling and Merging

Quantized (x,y,z) (i.jk)
® (0,3,504) (3,7.56)
o (0,10,500) (3.7.164)
™) (0,8,506) (3,7,138)

© O ® (0,3504,,10500,0,8,506) (3.7,56,164,138)

Hierarchical Levels of Blocks

Figure 1. Details of our tokenization algorithm. We first traverse mesh faces by dividing them into patches according to their connectivity
and quantize each vertex of faces into r bins (in our setting » = 512).Then we partition the whole coordinate system into three hierarchical
levels of blocks and index the quantized coordinates as offsets within each block. We merge the index of neighbor vertices if they have the

identical values.

A. Details of Tokenization Algorithm

In this section, we detail our improved tokenization algo-
rithm. As illustrated in Figure 1, we first traverse mesh
faces to reduce redundancy in the vanilla mesh representa-
tion. Specifically, we divide mesh faces into multiple local
patches according to their connectivity similar to [6]. Each
local patch is formed by grouping a central vertex O with its
adjacent vertices P.,, which are organized based on their
connectivity order:

LO:(O7P17P27"'7P’I'L) (1)

This organization helps maintain local mesh connectivity by
explicitly encoding edge-sharing relationships between ad-
jacent faces. To find each center vertex, we begin by sorting
all the unvisited faces. Next, we select the first unvisited
face and choose the vertex connected to the most unvisited
faces as the center. Then, we iteratively traverse the neigh-

boring vertices within the center’s unvisited faces, expand-
ing the local patch by adding adjacent vertices that connect
to the current patch. Once the patch is complete, we mark
all its faces as visited. We repeat the process above until
every face is visited.

After the local-wise face traversal, we normalize and
quantize each vertex in faces and flatten them in XY Z or-
der. With a resolution of r, coordinates of each vertex are
quantized into [0, 7 — 1] (in our setting, = 512). The coor-
dinates of all vertices are then concatenated to form a com-
plete sequence of tokens. To further reduce the sequence
length, we partition the whole coordinate system into three
hierarchical levels of blocks and index the quantized coor-
dinates as offsets within each block, as shown in Figure 1.
The volume of each block is A, B and C respectively. In
our setting, A = 4, B = 8 and C' = 16. We scale quantized
Cartesian coordinate (z,y,x) of each vertex into (¢, j, k)

=&— DeepMesh
Bpt
35001 —@= MeshAnything
=&— Meshtron
3000
2500
a
[
€
i= 2000
o
c
€
©
= 1500
1000
500
0

0 5000 10000 15000 20000 25000 30000 35000 40000
Face Count

Figure 2. Comparison with other tokenization algorithms in
training efficiency. We integrate all tokenization algorithms into
our model architecture and train them on a dataset of 80 meshes
for each face count category (10K, 20K, 30K, 40K). Our method
achieves the fastest training time across all face count categories,
demonstrating superior training efficiency.

by:
i=(x|B-C)-A*+(y|B-C)-A+ (2| B-0)
j=@%B-C|C)-B*+ y%B-C|C)-B
+(z%B-C | C)
k=2%C)-C? + (y%C) - C + 2%C

2

As the coordinates are sorted, it is common for neigh-
bor vertices to share the same offset in block. There-
fore, we merge the adjacent (4, j, k) if they have the iden-
tical values to save more length. Specifically, for vertices
Vi, V2, -+, Up, the sequence of their coordinate representa-
tion can be simplified as follows:

(Ulvaa'” ,’Un) = (ilajlvklvilvjlvk@a"‘ ,il,j27k5+1)
= (i17j17k17k2a"' 7k87j27k8+17"' 5kn)
3)

To distinguish different patches, we extend the vocab-
ulary size of 7 and j for each center vertex in patches.
This design eliminates the need for special tokens to sep-
arate adjacent local patches, thereby avoiding unnecessary
increases in mesh sequence length.

B. More Implementation Details

B.1. Training Data Filtering Pipeline

The data in training dataset varies significantly in quality,
which may lead to three primary challenges: 1. Unstruc-

tured topology that fails to meet the artist-mesh standard.
2. Fragmented data that cannot assemble into complete sur-
faces. 3. Overly complex structures, such as characters with
tangled or messy hair geometry.

To efficiently filter out low-quality data, we propose a
multi-stage data filtering pipeline:

(1) First of all, We remove meshes with a mesh.area met-
ric below 1 to filter out the fragmented data.

(2) Subsequently, We construct a high-quality subset of
the training data and perform low-cost pretraining on it to
build a baseline model. Specifically, We train a 0.5B model
on Objaverse [3].

(3) Finally, the pretrained model is then used to evaluate
the remaining data by computing test losses. Evaluation is
mainly conducted on the private data in our training dataset.
Samples with a test loss greater than 1 are discarded.

After filtering out the poor-quality samples, the result-
ing dataset consists of approximately 500k meshes, with an
average face count of 8k.

B.2. Preference Pair Construction Pipeline

The point clouds in the preference pair construction are
from both the training set and a manually curated test set to
ensure diversity for learning human preferences. However,
generating high-poly meshes is extremely time-consuming.
For example, our full-scale model requires around 10 min-
utes to generate a single mesh with over 30K faces. There-
fore, it is crucial to filter out overly complex meshes when
constructing the DPO dataset to improve efficiency and fea-
sibility. Moreover, to maintain representativeness, overly
simple meshes must also be excluded. We follow a similar
data-filtering approach in Section B.1, removing samples
with fewer than 5,000 faces as well as those with extremely
high or low test loss. Based on the remaining curated subset,
we construct the preference pair dataset for post-training.
For each point cloud, we generate two mesh outputs with a
temperature of 0.5.

B.3. More Training Details

We respectively train a small-scale model and a large-scale
model for DeepMesh, with architecture details provided in
the Table 1. We train both of the models for 100k iter-
ation steps to ensure convergence. Moreover, we employ
FlashAttention and Zero2 to reduce GPU memory usage.

B.4. Hourglass Transformers

Inspired by [4, 5], we adopt the Hourglass Transformers
architecture for efficient training. For hyper-parameters, we
adopt the settings from [4]. Specifically, the shortening
factor is set to 3, while both the down-sampling and up-
sampling layers are used with the Linear layers.

Small scale Large scale
Parameter count 500 M 1.1B
Batch Size 9 5
Layers 21 20
Heads 10 14
Aimodel 1280 1792
dpeN 5120 7168
Learning rate le —4 le—4
LR scheduler Cosine Cosine
Weight decay 0.1 0.1
Gradient Clip 1.0 1.0

Table 1. Deepmesh’s architectural and training details.

C. Additional Ablation Studies
C.1. Efficiency of Tokenization

We evaluate the computational efficiency of our mesh tok-
enization algorithm compared to other baselines [2, 4, 6].
To ensure a fair comparison, we integrate each method’s
compressed mesh representation into our model while keep-
ing all other parameters unchanged, as detailed in Table 1.
For training, we use a single GPU and dynamically adjust
the batch size to fully utilize available memory. We test
on a dataset of 80 meshes for each face count category:
10K, 20K, 30K, and 40K faces. As shown in Figure 2, our
method consistently exhibits lowest training time across all
face count categories, and achieves the best training effi-
ciency.

C.2. Data Curation

During the initial stages of training, we observe frequent
spikes in the loss curve, as illustrated in Figure 3a . This
suggests that certain training samples lead to irregular loss
values, potentially disrupting the learning process. To ad-
dress this issue, we apply the data filtering strategy outlined
in Section B. 1, removing low-quality samples to ensure sta-
ble training. This filtering process can mitigate the incon-
sistencies caused by poor mesh structures. The impact of
this curation is reflected in the improved training loss curve,
shown in Figure 3b.

C.3. Scaling Preference Data Pairs in DPO

We generated a total of 10,822 mesh pairs. Among them,
5,707 low-quality pairs, in which both meshes had a Cham-
fer Distance (CD) > 0.1, were discarded. The remain-
ing dataset included 1,528 CD-labeled and 3,587 human-
labeled pairs respectively. To evaluate the effect of data
scaling, we constructed multiple subsets by sampling from
the retained dataset while preserving the original ratio be-
tween CD-labeled and human-labeled pairs. The model
was then post-trained on each subset containing different

Training Loss of DeepMesh Before Data Curation

Original
[—— Smoothed
54
44
@
S
o
2
£ 34
£
24
1
" A
T v T T T T i
0 5000 10000 15000 20000 25000 30000
Training Steps
(a) Before data curation
Training Loss of DeepMesh After Data Curation
7
Original
—— Smoothed
6
5 4
«
&4
o
c
£
R
24
14
0+ T T T T T T
0 5000 10000 15000 20000 25000

Training Steps
(b) After data curation

Figure 3. Training loss before and after data curation. Before
data curation, we observe frequent loss spikes. After data curation,
pre-training becomes significantly more stable.

quantities of data pairs. For an intuitive presentation, we
use validation loss to evaluate the effectiveness of DPO. As
shown in Figure 4, scaling up data pairs leads to a more
pronounced and consistent reduction in validation loss, in-
dicating that DPO performance improves with larger-scale
datasets.

C.4. Effect of Human-annotated Preferences

Although annotation based solely on the Chamfer Distance
(CD) metric offers automation and efficiency, we still in-
corporate human selection to more accurately capture hu-
man preferences. To evaluate the impact of human anno-
tation, we additionally annotate the retained human-labeled
mesh pairs with CD and conduct separate experiments us-
ing the dataset labeled by CD and human. As illustrated in

Validation Loss per Epoch

e

—— 1000 data pairs
2000 data pairs
5000 data pairs

Validation Loss
o o o
o 0] o2} (o1}
- N N
(9] o w

0.810

0.805
0 1 2 3 4 5 6 7 8

Epoch
Figure 4. Validation loss at post-training across different scale
of DPO dataset. Scaling up data pairs leads to greater reductions
in validation loss, which indicates a better DPO generalization per-
formance.

Validation Loss per Epoch

0.86
—— only CD-labeled
—— only human-labeled
0.85 1
7]
3 0.841
o
o
© 0.83
o
S
0.82 1
0.81 1
0 1 2 3 4 5 6 7 8
Epoch

Figure 5. Comparison of validation loss using CD-labeled and
human-labeled data pairs. The lower validation loss achieved
through post-training on human-labeled data highlights the impor-
tance of human selection and insufficiency of CD-only annotation
in capturing complex preferences.

Figure 5, post-training on human-labeled data yields lower
validation loss and improved DPO performance. This high-
lights the necessity of human-annotation and limitations of
relying solely on geometric metrics such as CD in capturing
nuanced human preferences.

D. Details of User Study

We conducted a user study to quantitatively evaluate our
point cloud-conditioned results with baselines. The study
contained 100 questions, with each question displaying two
rendered views of the input point cloud and the output
meshes generated by the compared methods. To ensure
an objective evaluation, all options were anonymously pre-
sented in a randomized order. Each participant was ran-
domly assigned 30 questions and asked to select the best
result for each. In total, we collected 900 valid responses

from 30 volunteers with diverse backgrounds.

E. Limitations and Future Work

Although DeepMesh demonstrates impressive mesh gener-
ation capabilities, there are several limitations to address in
future work. First, The generation quality of DeepMesh is
constrained by the low-level features of point cloud condi-
tioning. As a result, it struggles to recover fine-grained de-
tails present in the original meshes. To address this, future
improvements could focus on enhancing the point cloud en-
coder or integrating salient point sampling techniques, such
as those proposed in [1]. Also, DeepMesh is trained on a
limited number of 3D data. We believe incorporating more
datasets could further enrich the generated results. Addi-
tionally, we use only a 1B model due to limited computa-
tional resources. We believe that using a larger scale model
would further improve the generation quality.

F. More Results

We provide more visualization results respectively in Figure
6 and Figure 7. Additionally, we select specific cases and
present their high-resolution renderings in Figure 8,9 and
10 to see their finer details.

References

[1] Rui Chen, Jianfeng Zhang, Yixun Liang, Guan Luo, Weiyu Li,
Jiarui Liu, Xiu Li, Xiaoxiao Long, Jiashi Feng, and Ping Tan.
Dora: Sampling and benchmarking for 3d shape variational
auto-encoders. arXiv preprint arXiv:2412.17808, 2024. 4

[2] Yiwen Chen, Yikai Wang, Yihao Luo, Zhengyi Wang, Zilong
Chen, Jun Zhu, Chi Zhang, and Guosheng Lin. Meshanything
v2: Artist-created mesh generation with adjacent mesh tok-
enization. arXiv preprint arXiv:2408.02555, 2024. 3

[3] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs,
Oscar Michel, Eli VanderBilt, Ludwig Schmidt, Kiana Ehsani,
Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A universe
of annotated 3d objects. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages
13142-13153, 2023. 2

[4] Zekun Hao, David W Romero, Tsung-Yi Lin, and Ming-Yu
Liu. Meshtron: High-fidelity, artist-like 3d mesh generation
at scale. arXiv preprint arXiv:2412.09548, 2024. 2, 3

[5] Piotr Nawrot, Szymon Tworkowski, Michat Tyrolski,
Lukasz Kaiser, Yuhuai Wu, Christian Szegedy, and Henryk
Michalewski. Hierarchical transformers are more efficient
language models. arXiv preprint arXiv:2110.13711,2021. 2

[6] Haohan Weng, Zibo Zhao, Biwen Lei, Xianghui Yang, Jian
Liu, Zeqiang Lai, Zhuo Chen, Yuhong Liu, Jie Jiang, Chun-
chao Guo, et al. Scaling mesh generation via compressive
tokenization. arXiv preprint arXiv:2411.07025,2024. 1,3

Original Mesh Generated Mesh

I
WiV
1

)
i
*
%
()
:

Figure 6. More results of DeepMesh. We present more high-fidelity results generated by our method.

Original Mesh Generated Mesh

ﬂ IE g Sy 44

Figure 7. More results of DeepMesh. We present more high-fidelity results generated by our method.

Figure 8. High resolution results of our generated meshes.

KOKEKT

Figure 9. High resolution results of our generated meshes.

Figure 10. High resolution results of our generated meshes.

