DepR: Depth Guided Single-view Scene Reconstruction with Instance-level
Diffusion

Supplementary Material

1. Detailed Runtime Analysis

Tab. | reports the per-module inference time for DepR, av-
eraged per scene and measured on a single NVIDIA A100
GPU. The 2D preprocessing stage, which includes segmen-
tation and depth estimation using pre-trained models, takes
1.6s in total. Since diffusion is performed over latent tri-
planes of size 2 x 322, as opposed to the raw tri-plane of
size 32 x 1282, the process remains efficient, requiring only
1.2 s for 50 DDIM sampling steps.

The most computationally expensive operation is guided
sampling, which involves depth map rendering at each sam-
pling step and takes 35.9s. Layout optimization requires
16.1s and is performed twice during guided sampling.

Overall, the full pipeline takes approximately 1.2min
per scene with guided sampling enabled, and about 20s
without it.

Table 1. Inference runtime of different modules for DepR.

Module Runtime
Segmentation 0.8s
Depth Estimation 0.8s
Latent Triplane Diffusion 1.2s
VAE + SDF Decoding 1.0s
Layout Optimization 16.1s
Guided Sampling 35.9s

2. Additional Implementation Details

2.1. SDF Depth Rendering

Depth-guided sampling requires rendering a depth map for
the object being reconstructed. Following MonoSDF [5],
we render the predicted SDF field into a depth map via dif-
ferentiable volumetric rendering. SDF values s are first con-
verted into density values using the following equation:
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where [ is a hyper-parameter, set to 0.001 in our experi-
ments.

op(s) =

To compute the depth ﬁ(r) of the surface intersecting
the current ray r, we sample M points of the form o + tiv,
where o and v are the camera origin and viewing direction,
respectively. The expected depth is computed as:

M
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where the transmittance 77 is defined as:
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and the alpha value o is given by:
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where d% is the distance between adjacent sample points.
The rendered depth D is then used to compute the scale-
invariant loss, which guides the DDIM sampling process
for improved alignment with the actual depth.

2.2. Network Architecture

For the conditioning input, we construct the feature vol-
ume V by back-projecting image features into 3D space,
followed by a 3D CNN and a linear projection to obtain a
tensor of shape 9 x 323. After orthogonal projection onto
the three planes (XY, YZ, XZ), we obtain 3-view feature
maps Fpyoj € R3x9%32%

We then concatenate the noised latent z, € R3*2x32%
the 3-view features I},.0;, and the attention-enhanced 2D
feature Fy, € R1*32° (zero-padded for XZ and YZ planes)
along the feature dimension. The resulting tensor has shape
3 x 12 x 322 and is passed to the diffusion U-Net.

The diffusion U-Net follows the architecture proposed
in BlockFusion [4], which adapts a standard 2D U-Net to
operate over tri-plane inputs. All 2D convolution layers are
replaced with a specialized GroupConv operator, enabling
parallel processing of the three planes. To allow information
exchange across planes, the feature maps are flattened into
1D tokens and passed through six self-attention layers in the
U-Net’s middle block.
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Figure 1. Additional qualitative results on the 3D-FRONT [2] dataset.
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Figure 2. Failure cases of DepR. Red rectangles indicate incorrect
layout estimation; orange rectangles highlight incorrect object re-
construction.

3. Additional Qualitative Results

Fig. 1 presents additional qualitative examples from the 3D-
FRONT [2] dataset. Feed-forward methods such as In-
stPIFu [3] and BUOL [1] generally demonstrate limited
generalizability. BUOL, which is trained on less realistic
renderings from 3D-FRONT, fails to reconstruct meaning-
ful geometry in most scenes, except for the scene in row
3. Among compositional methods, DepR consistently pro-
duces more visually coherent surfaces and superior overall
geometry.

4. Limitations

Fig. 2 illustrates several failure cases of DepR. Due to
its generative nature, DepR may incorrectly reconstruct or
“hallucinate” objects when observations are severely lim-
ited by extreme occlusions (highlighted in orange rectan-
gles). In the scene composition stage, the primary limita-
tion arises from the optimization-based layout estimation
(highlighted in red rectangles), which is susceptible to local
minima. This issue becomes particularly pronounced when



only a small portion of an object is visible, leading to highly
incomplete depth point clouds that hinder accurate pose es-
timation.

Future work could address this limitation by integrating

a learned, feed-forward pose regression module into the re-
construction framework. Such an approach may reduce the
sensitivity to local minima and significantly improve overall
inference efficiency.
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