A. Appendix

A.1l. Implementation Details

We adopt ViT-Base [8] as the backbone. When using pre-
training paradigms of CLIP and DINOv2, we directly initial-
ize ViT from their weights. Besides, when using CLIP, we
leverage CLIPN [70] as the baseline method and we follow
their scoring metric. For DINOv2, we use DINOv2 with
standard cross-entropy loss as the baseline method and the
scoring metric is KNN [54]. When using DINOv2, we first
conduct linear probing for 3 epoches to ensure its training
stability. Our models are trained with AdamW optimizer
with 8, = {0.9,0.95}, with an effective batch size of 1024
on 8§ NVIDIA 3090 GPUs. The values for weight decay and
layer decay are 0.05 and 0.75, The training epochs are set to
40. We set a cosine learning rate schedule and the minimum
learning rate is le-6.

A.2. Implementation Details of Naive Finetuning

The model is trained with cross entropy loss and Adam
optimizer with 85 = {0.9,0.95}, with an effective batch size
of 1024 on 8 NVIDIA 3090 GPUs. The values for weight
decay and layer decay are 0.05 and 0.75. The training epochs
are set to 40. We set a cosine learning rate schedule, and
the minimum learning rate is le-6. We first conduct linear
probing for 3 epochs to ensure their training stability. During
the testing phase, we use KNN as the classifier using features
from the penultimate layer.

A.3. Comparison with the traditional MoE

The proposed Mixture of Feature Expert (MoFE) is specif-
ically tailored for OOD detection with foundation models,
which is different from the original MoE designed for general
LLM and vision tasks from both insights and methods. In
terms of insights, our MoFE was crafted to reduces the diffi-
culty of fitting complex data distribution when training foun-
dation models on limited In-Distribution (ID) data, while
MoE is initially designed to accelerate inference for large
models [47] and is leveraged for learning visual attributes for
domain generalization [1]. We’re not aware of any existing
work that shares our insights. In terms of method design, as
our primary insights are to prevent features from collapsing
to the ID data distribution, we partition the feature space into
different subspaces and design routing mechanism based on
feature similarities. Our routing mechanism leverages the
class token, which contains the most discriminative feature,
to guide all the features to the specific expert.

A.4. Further Evaluation for Pilot Study.

We conduct further validation for pilot study, where we select
data from Openlmage [23] for experiments. Specifically, we
randomly select 1000 classes as the ID data. Furthermore,
we randomly sample another 1000 classes as the OOD data,

which is denoted as subset 1. For constructing a finegrained
OOD subset, we select the categories which are closely
related to the ID categories, where semantically belong to
the same superclasses with the ID data according to WordNet.
We denote it as subset 2. The results in Tab. 8 demonstrate
that 1) Foundation models surpass the ImageNet pretrained
methods by a large margin. 2) DINOv2 performs better than
CLIP in the finegrained OOD tasks. For example, DINOV?2
with KNN achieve 17.23% FPR95 in subset 2, while the
CLIP based method can only achieve 29.87% FPRO95.

A.5. Limitation

We summarize the limitations of our research as follows: Al-
though CLIP and DINOV?2 are currently the top foundation
models, they still have inherent shortcomings. For instance,
CLIP only utilizes image-text pairs for contrastive learning
between text and images, lacking self-supervised learning
on images. This results in its inability to capture fine-grained
image details, leading to poor performance on finegrained
tasks. On the other hand, DINOv2 employs a large number
of images for self-supervised learning, yet it still performs
poorly on certain categories, indicating potential long-tail
distribution issues in its pre-training data. The current bench-
marks for OOD detection have significant limitations. While
they utilize datasets like ImageNet-1K, which cover a wide
range of categories, the OOD data itself is relatively limited.
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EI‘ MCM [41] 30.91 94.61 37.59 92.57 44.69 89.77 57.71 86.11 42.74 90.77 67.01
© CLIPN [70] 23.94 95.27 26.17 93.93 33.45 92.28 40.83 90.93 31.10 93.10 68.53

LSN [45] 21.56 95.83 34.48 91.25 26.32 94.35 38.54 90.42 30.22 92.96 71.89
3 Energy [35] 13.23 96.86 66.63 83.32 61.57 84.76 66.43 82.36 51.96 86.82 81.70
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%l MaxLogit [15] 8.21 98.22 53.93 85.80 50.48 87.00 54.32 85.25 41.73 89.06 81.70
E KNN [54] 3.01 98.26 42.78 88.89 35.96 91.51 35.30 91.05 29.27 92.67 81.70

Naive finetuning 5.67 97.65 43.25 88.21 36.42 90.21 28.04 92.66 28.34 92.18 85.96

Table 7. Quantitative results of OOD detection performance for ImageNet-1k as ID. We conduct three pre-training paradigms (ImageNet
Pretrained (IN-1K), CLIP, and DINOv2) for comparison. We use FPR95 and AUROC as evaluation metrics. We also report ID classification
accuracy.

(a) Train with MOS (b) Train with MoFE

Figure 5. Visualization of feature space of MoFE and MOS. It can be observe that, trained with MOS, the outlier features are still mingled
with in-domain data, while MoFE can well separate the in- and out-of-distribution data.
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Table 8. Pilot Study using data from OpenImage [23]. We conduct three pre-training paradigms (ImageNet-1K (IN-1K) Pretrained, CLIP,
and DINOV2) for comparison. We use FPR95 and AUROC as evaluation metrics. We also report ID classification accuracy.
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(a) Train with Mixup (b) Train without Mixup

Figure 6. The effect of vanilla mixup on the feature space of DINOv2. We can observe that vanilla Mixup can blur the decision boundary
between ID and OOD.



(f) DINOV?2 - failure

(d) DINOV2 - coarse-grained (e) DINOV2 - fine-grained

Figure 7. Feature Space Visualization for Foundation Models. The first row shows the feature space for CLIP and the second is for
DINOV2. For each of them, we visualize the features of coarse-grained categories, fine-grained categories, and some failure cases. For the
coarse-grained feature visualization (column 1), we randomly select 15 categories from different super classes in ImageNet-1k following
WordNet. For the fine-grained feature visualization (column 2), we randomly select 11 fine-grain categories under 3 different super classes.
For the failure case visualization, we select the categories which have the low in-domain accuracy.
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