Keep Your Friends Close, and Your Enemies Farther: Distance-aware Voxel-wise
Contrastive Learning for Semi-supervised Multi-organ Segmentation

Supplementary Material

The supplementary material is organized as follows:

* §A: Additional details on the training datasets.

* §B: Additional details on the data preprocessing and im-
plementation.

¢ §C: Detailed algorithm.

¢ §D: More experimental results.

* §E: More qualitative visualization.

» §F: More experiment results on ablation study for hyper-
parameters.

¢ §G: Additional details on the complete derivation of the
formula.

A. Datasets

FLARE 2022. This dataset is from the MICCAI 2022 Chal-
lenge Fast and Low GPU memory Abdominal Organ Seg-
mentation [12] and comprises 70 3D CT volumes accom-
panied by a corresponding ground-truth mask. In addition,
it includes 2000 unlabeled 3D CT volumes. The dataset is
designed to segment 13 abdominal organs: the liver (Liv),
spleen (Spl), pancreas (Pan), right kidney (R .kid), left kid-
ney (L.kid), stomach (Sto), gallbladder (Gal), esophagus
(Eso), aorta (Aor), inferior vena cava (IVC), right adrenal
gland (RAG), left adrenal gland (LAG), and duodenum
(Duo). For dataset partitioning, we divide the labeled data
into training, validation, and test sets at a ratio of 6:2:2. In
our experiments, we incorporate the unlabeled data into the
training set, resulting in labeled data proportions of 50% (42
labeled cases and 42 unlabeled cases) and 10% (42 labeled
cases and 378 unlabeled cases) within two training sets.
AMOS. This dataset is from the Multi-Modality Abdominal
Multi-Organ Segmentation Challenge 2022 [6]. The AMOS
dataset is comprised of 300 CT images, which are annotated
at the pixel level for 15 distinct abdominal organs, includ-
ing two additional organs not found in the FLARE 2022
dataset: the bladder (Bl) and prostate/uterus (P/U). In our
experiments, we divide the dataset into training, validation,
and test sets using a ratio of 6:2:2. For the training set, the
proportion of labeled data is set to 10% and 50%.
MMWHS. This dataset is from the Multi-Modality Whole
Heart Segmentation Challenge 2017 [19]. The dataset
contains 20 3D CT volumes with corresponding annota-
tions of seven cardiac structures, i.e., the myocardium of
the left ventricle (MYO), left atrium blood cavity (LAC),
right atrium blood cavity (RAC), left ventricle blood cavity
(LVC), right ventricle blood cavity (RVC), ascending aorta
(AA), and pulmonary aorta (PA). In our experiments, we
divide the dataset into training, validation, and test sets at a

ratio of 6:2:2. For the training set, the proportion of labeled
data is set to 10% and 50%.

BTCV. This dataset is from MICCAI Multi-Atlas Labeling
Beyond Cranial Vault-Workshop Challenge [7] which con-
tains 30 CT images with 13 organs annotation. In contrast
to the FLARE 2022 dataset, the Duo has been replaced with
the portal vein and splenic vein (P&S). In our experiments,
we divide the dataset into training, validation, and test sets
using a ratio of 6:2:2. For the training set, the proportion of
labeled data is set to 10% and 50%.

B. Data Preprocessing and Implementation
Details

Data Preprocessing. We apply hierarchical steps for data
preprocessing before network training. 1) the orientation
of all CT scans is standardized in the left-posterior-inferior
(LPI) direction. 2) The voxel values are clipped into the
range of [-325, 325] Hounsfield units (HU) to enhance the
contrast of the foreground organs and suppress background
interference. 3) The voxel spacing is standardized to [1.25,
1.25, 2.5]. 4) Min-max normalization is implemented using
the formula (.13 — 1‘0,5)/(1‘99_5 — J)o,5), where g 5 and x99 5
represent the 0.5th and 99.5th percentiles of x, respectively.
Implementation Details. For network training, we use the
stochastic gradient descent (SGD) optimizer with a weight
decay of 0.0001 and momentum of 0.9 [11]. To mitigate the
overfitting problem, we apply basic data augmentation, in-
cluding random cropping and flipping [14]. The model uses
randomly cropped patches as inputs, with a patch size of
64x128x128. During network training, we adopt a polyno-
mial learning rate policy that scales the initial learning rate
by (1— %)0‘9 [1], where iteration and max_iteration
represent the current iteration and maximum number of iter-
ations, respectively. For the MMWHS dataset, the segmen-
tation model is trained with a batch size of 4, comprising an
equal split of 2 labeled and 2 unlabeled instances, over a to-
tal of 10,000 iterations with an initial learning rate of 0.03.
For the FLARE 2022, AMOS and BTCV datasets, we opt
for a batch size of 8, including 4 labeled and 4 unlabeled
instances, and conduct training for 20,000 iterations with
an initial learning rate of 0.1. Note that, for all the eval-
uated methods, we make no additional modifications dur-
ing the training process for fair evaluations. During infer-
ence, the final volumetric segmentation is generated using a
sliding-window strategy. The stride used is 32 x 80 x 80,
and the sliding-window approach employs a patch size of
64 x 160 x 160.



Algorithm 1: Training Procedure of Our Framework

input : Segmentation networks { f(-;6;)}, maximum epoch Ey,x, batchsize B, labeled training data and their
ground-truth masks S; = {(x;, ;) }, unlabeled training data S,, = {(x;)},}.
output: Trained weights of model A f(-;04) and model B f(-;05);

1 Initialize network parameters of model A f(-;60.4) and model B f(-;05);
2 for epoche [1, Eyax] do

3 for batch B do

4 Get probabilities: p;' < segmentation head A(z;), p? < segmentation head B(z;);
5 Get features: ri! « feature head A(xz;),r? « feature head B(z;);

6 for x; € S; do

7 ‘ Calculate Ly, < {p?,pP,y:}; // Compute supervised loss
8 end

9 forz; € S, do

10 Get pseudo-labels: ! +— arg max(p#), 2 «+ arg max(p?);

1 Get reliable pseudo-labels M (x;) and M P (z;);

12 Get unreliable pseudo-labels M (x;) and M P (z;);

13 Calculate L.,s < {9, 92,02, pP}; // Compute CPS loss

14 end

15 Initialize Leontra < 0, Lnger < 0, Laver + 05

16 for z; € S;US, do

17 for z; € S, U M2 (2;) U MP(z;) do

18 for c < 1to C do

19 Get feature sets of anchor voxels R.;

20 Random sample M anchor voxels: {r,,,}}/_, € R.;

21 Get positive candidates P.;

2 Get feature sets of negative candidates G. = GA' | GB;

23 Random sample N negative candidates: {r, })_, € G.;

24 Calculate £ + {{r,,}M_,, {r,}_,,P.};// Compute HQCL loss
25 Lhget < Lnger + L

26 end

27 end

28 for z; € M (x;) U MB(2;) do

29 Random sample M’ query voxels: {z;}M;

30 Exclude potential outliers; // QDS

31 For each query voxel x;, calculate {Oi7j}|J-]g;A(Ii)UM5 (@)=l

32 Get the close neighbor set CiK ;

33 Get the distant outsider set DX E

34 Calculate the affinity value A; ; of its j-th neighbor;// NPS

35 Calculate Ly < {r;, A; ;,Ci, D;}; // Compute DVCL loss
36 end

37 end

38 Calculate Leontra < Lhgel + BLavel 5

39 Update model A f(-;04) and model B f(-;0p) by decreasing the stochastic gradient on L, Lcps, and

Leontra; // Update network parameters

40 end
@ epoch= epoch+1,

42 end




Methods Mean Dice for each organ Mean Mean
Liv. Spl Sto L.kid Rkid Aor Pan IVC Duo Gal Eso RAG LAG Dice Jaccard
\ Fully \ 94.21 88.32 49.40 91.68 91.33 89.89 48.83 79.24 52.10 56.24 61.13 44.87 42.12H 68.41+0.58 56.9740.42
50% labeled data (labeled:unlabeled=42:42)
DAN [18] 96.50 89.74 62.04 93.63 93.24 90.76 61.71 80.09 66.60 70.07 67.20 58.04 43.47 | 74.86+0.69 63.73+0.62
MT [13] 96.97 89.64 66.63 93.66 92.58 91.39 68.65 82.08 60.96 69.89 71.68 57.51 62.21 | 77.224+0.42 65.94+0.83
d UA-MT [17] || 97.21 88.85 71.66 94.00 93.50 92.41 70.60 82.92 64.85 76.82 72.05 60.02 60.85| 78.914+0.89 68.01+1.21
i SASSnet [8] || 95.25 92.03 66.48 92.47 93.79 90.03 63.61 79.94 60.14 65.57 70.83 59.98 62.78 || 76.38+0.61 65.20+0.60
3| DTC [10] 96.47 91.33 65.94 94.46 93.57 92.52 64.88 83.77 65.58 75.80 68.53 68.87 61.35|| 78.704+0.79 67.64+1.05
CPS [2] 96.77 91.23 72.63 93.38 93.70 92.35 70.34 83.30 65.48 78.81 72.37 58.34 61.47| 79.244+0.56 67.99+0.56
CLD [9] 94.27 88.54 74.88 91.48 93.33 91.51 71.51 83.21 68.15 76.68 71.03 64.57 63.98 | 79.474+0.27 67.95+0.28
DHC [14] 92.54 90.81 76.96 93.39 92.18 91.84 74.65 83.25 69.44 84.60 72.91 64.52 55.88 | 80.234+1.07 68.90+£0.26
MagicNet [1] || 96.49 88.84 80.33 90.84 93.06 91.72 69.46 81.98 67.44 82.81 75.79 63.40 59.98 | 80.16+0.33 69.08+0.12
UGPCL [15] || 96.00 90.63 79.75 94.88 94.01 90.86 73.39 82.26 66.28 81.02 71.42 61.81 65.44 || 80.594+0.85 69.76+0.85
d U2PL [16] 96.83 90.67 77.19 94.25 94.33 92.73 74.36 84.22 68.37 82.99 75.57 66.83 67.27 || 81.974+0.31 71.69+0.31
E BaCon [5] 95.54 90.81 76.89 93.78 93.49 91.71 74.68 83.77 68.67 83.33 73.18 68.80 66.54 | 81.63+0.56 70.82+0.57
=| CCL [4] 96.25 91.65 76.14 93.04 93.48 92.15 73.44 83.19 67.35 82.49 75.54 68.05 64.39 || 81.324+0.32 70.68+0.51
Ours 96.63 94.24 84.65 93.87 93.64 91.85 76.00 84.03 69.96 87.44 74.75 71.16 69.49 || 83.67+0.35 73.1110.72
10% labeled data (labeled:unlabeled=42:420)
DAN [18] 95.89 84.15 67.29 92.81 91.96 91.35 63.12 79.33 66.48 77.29 67.82 50.41 48.41 | 75.10+0.69 63.83+0.23
MT [13] 96.49 91.54 74.64 93.78 92.77 92.17 69.23 82.71 66.68 73.49 70.66 61.88 41.26 || 77.49+0.48 66.45+0.39
d UA-MT [17] || 96.42 91.98 79.91 92.74 92.83 9233 71.43 83.10 67.72 77.26 72.41 64.04 46.18 | 79.104+0.38 68.21+£0.48
i SASSnet [8] || 96.21 90.40 67.12 94.00 92.85 91.61 67.89 79.59 65.47 71.59 71.44 52.07 57.83|| 76.77+0.30 65.89+0.44
3| DTC [10] 96.63 9291 72.76 92.68 92.40 91.87 66.82 81.47 65.76 78.38 69.39 59.74 59.10 || 78.454+0.82 67.05£1.02
CPS [2] 96.62 92.16 77.02 92.70 92.71 92.25 69.39 81.91 65.94 75.12 72.78 63.56 58.96 || 79.324+0.46 68.14+0.61
CLD [9] 94.63 89.74 73.20 91.76 92.97 91.61 70.27 83.12 68.13 84.15 72.69 67.89 55.27| 79.65+0.17 68.22+0.49
DHC [14] 93.17 90.64 80.56 93.13 92.89 91.38 72.22 83.75 69.73 82.47 73.25 67.12 56.19 || 80.504+0.43 69.38+0.63
MagicNet[1] || 97.04 88.04 81.51 92.18 92.95 91.75 71.15 81.01 69.61 84.36 77.07 63.34 60.33 | 80.79+0.75 70.23+0.96
UGPCL[15] || 96.81 92.11 75.48 94.02 94.79 92.07 68.75 82.46 68.60 77.50 71.09 63.54 58.10|| 79.64+0.72 69.09+0.58
d U2PL [16] 96.34 91.45 80.09 94.30 93.81 91.17 74.53 83.13 69.88 84.40 72.70 67.25 68.12 || 82.094+0.32 71.34+0.51
i BaCon [5] 95.88 90.35 77.17 94.35 93.98 92.10 73.32 83.75 69.67 81.15 74.87 69.44 69.55| 81.974+0.33 71.04+0.40
=| CCL [4] 95.77 91.44 76.81 92.71 93.54 92.02 73.59 83.58 67.17 81.19 75.45 70.15 69.99 || 81.804+0.11 70.91+0.32
Ours 97.19 93.37 84.39 95.22 93.58 92.71 77.03 84.72 71.98 85.81 75.62 70.97 71.38 | 84.15+0.07 73.6210.29

Table 1. Quantitative results (mean Dice for each organ, mean and SD of Dice, and mean and SD of Jaccard) on two settings of FLARE
2022 dataset. ‘w/o VCL ’or ‘w/ VCL’ indicates whether the SSL methods combined with VCL or not. Best results are boldfaced.
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Figure 1. Visualization of the segmentation results for the FLARE 2022 dataset. (a-c) Segmentation results for one case of three transverse
sections and (d) 3D segmentation views. As seen, better segmentation is achieved at the boundaries by our method, highlighted in yellow

dashed boxes.



Methods Mean Dice for each organ Mean Mean
Liv. Sto Spl L.kid Rkid Aor Bla IVC Pan Duo P/U Gal Eso RAG LAG Dice Jaccard
10% labeled data (labeled:unlabeled=18:162)
3D U-Net [3] || 85.99 40.08 82.19 79.57 80.24 75.51 11.63 59.86 26.80 20.22 22.40 15.06 37.05 32.46 9.68 || 45.24+0.65 39.06+0.42
DAN [18] 86.54 50.00 83.98 86.97 85.76 85.46 54.81 67.26 48.97 43.84 52.23 33.08 40.28 28.00 18.09| 57.80+0.88 47.38+0.89
g MT[13] 89.26 56.87 84.27 84.42 8598 85.57 51.22 70.13 4891 48.04 39.46 42.17 50.71 43.92 30.46| 61.44+1.28 51.00+1.10
i UA-MT [17] 88.25 52.49 86.39 86.34 87.73 86.14 68.22 70.76 47.19 42.79 49.54 32.49 52.87 43.98 37.76| 61.73+1.12 50.974+0.90
3 SASSnet [8] 90.33 48.61 86.87 87.66 88.17 87.09 43.55 73.85 50.29 48.56 8.38 36.15 43.18 41.36 28.85|| 58.35£1.42 51.154+0.83
DTC [10] 89.81 50.49 87.48 85.20 85.84 85.83 64.49 72.72 43.44 4736 39.19 38.62 50.56 42.53 37.02|| 60.81+1.27 50.84+1.24
CPS [2] 88.52 55.52 83.25 86.30 87.97 85.36 60.53 71.71 50.11 46.05 60.33 37.95 52.37 46.33 37.48| 63.52+0.36 51.824+0.49
CLD [9] 88.43 63.71 84.90 85.85 86.07 85.16 64.15 75.56 55.21 49.67 60.62 39.47 56.71 50.91 40.56 | 65.81+1.24 54.00+1.69
DHC [14] 83.27 63.39 83.60 84.11 85.66 84.40 74.52 74.88 56.02 51.89 65.47 47.53 43.21 4828 42.59|| 65.17+£147 52.46+1.30
MagicNet [1] || 88.99 61.20 83.52 88.39 87.24 83.69 62.47 74.83 54.11 51.18 54.62 56.69 55.68 46.87 43.16| 65.31+1.31 54.89+0.78
UGPCL [15] 90.31 60.14 86.78 86.62 87.87 86.69 56.14 71.14 36.27 44.16 46.04 38.21 48.82 38.20 35.09| 61.48+1.02 50.99+1.61
d U?PL [16] 90.23 54.80 85.80 87.97 89.10 87.95 59.31 74.39 52.07 51.45 54.92 36.64 56.67 49.77 44.54| 64.73£1.35 54.46+1.01
= BaCon [5] 89.84 56.57 86.36 89.41 88.78 88.35 38.96 73.62 50.98 44.82 50.47 43.36 58.67 50.81 42.81| 64.40+£1.50 54.61+0.72
5 CCL [4] 90.58 55.51 85.13 88.01 89.11 88.33 62.34 73.72 50.73 45.13 58.34 40.11 60.09 45.33 33.20|| 64.00£0.16 53.331+0.70
Ours 91.02 71.31 89.83 89.94 89.41 88.96 69.26 78.26 56.34 57.21 66.11 55.73 64.84 53.66 45.30| 71.3610.56 59.7610.65
50% labeled data (labeled:unlabeled=90:90)
3D U-Net [3] || 89.25 55.60 84.23 87.40 88.58 87.32 53.49 73.71 48.56 48.21 52.68 38.43 50.27 38.48 30.30|| 61.29+1.74 51.62+1.35
DAN [18] 90.49 5591 89.63 90.08 88.74 86.71 47.44 72.09 54.98 50.33 53.04 39.13 58.34 29.57 649 || 61.39£1.16 52.06+1.45
d MT [13] 92.08 62.02 89.83 90.23 89.24 89.12 63.05 78.11 53.46 52.85 40.93 51.63 59.64 45.41 37.35|| 66.17+£0.75 57.06£1.00
z UA-MT [17] 90.86 58.55 88.92 88.93 88.83 88.49 54.86 74.28 51.88 54.54 44.73 40.99 58.58 51.31 41.78|| 65.48+0.80 55.62+1.10
3 SASSnet [8] 91.65 53.00 91.54 89.61 89.72 88.50 50.43 74.87 46.34 52.48 5592 37.93 60.57 45.62 39.17|| 63.77£1.13 54.68+0.55
DTC [10] 91.25 56.49 90.68 88.88 89.30 89.16 67.37 76.50 48.13 54.67 54.23 41.88 62.49 47.67 4291 || 66.93£1.78 55.92+1.78
CPS [2] 90.94 61.90 89.97 90.25 89.67 88.77 65.03 75.27 52.34 45.15 54.76 42.87 62.44 49.96 47.74| 66.65+£1.24 56.56+0.54
CLD [9] 91.23 66.18 89.34 89.50 89.86 88.85 66.40 76.97 55.63 53.35 58.82 45.78 62.93 54.24 43.79|| 69.09+1.14 57.99+1.14
DHC [14] 86.68 58.39 86.62 85.57 87.48 87.28 67.04 74.38 60.88 56.91 58.87 53.75 54.14 51.59 51.03|| 68.60+0.56 56.05+0.51
MagicNet [1] || 91.69 66.33 88.59 90.28 89.64 86.80 61.80 74.39 59.94 52.88 57.28 58.83 59.53 52.74 42.35|| 68.94+0.56 58.331+0.52
UGPCL [15] 90.84 68.10 90.04 89.86 89.92 89.09 72.45 76.95 56.10 57.52 60.73 53.87 65.19 51.67 48.38| 70.71+£0.17 59.42+0.31
3 U?PL [16] 86.09 62.61 87.08 87.18 87.48 87.35 73.57 76.57 60.32 56.67 65.75 58.30 61.75 55.24 43.55|| 69.97+0.25 57.424+0.20
= BaCon [5] 88.51 64.40 88.78 88.58 89.22 88.27 73.17 77.69 54.44 55.58 64.46 53.14 62.29 51.34 51.15|| 70.07+0.35 57.9440.53
= CCL [4] 88.70 67.89 88.44 88.80 89.48 88.93 75.28 76.96 61.22 56.86 64.47 51.07 62.65 37.07 34.13|| 68.80+1.65 57.284+1.02
Ours 92.08 71.71 90.39 90.55 90.70 89.19 71.87 78.77 61.87 55.64 70.24 55.32 66.21 55.61 50.05| 72.454+0.76 61.1510.62

Table 2. Quantitative results (mean Dice for each organ, mean and SD of Dice, and mean and SD of Jaccard) on two settings of AMOS
dataset. ‘w/o VCL’ or ‘w/ VCL’ indicates whether the SSL methods combined with VCL or not. Best results are boldfaced.
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Figure 2. Visualization of the segmentation results for the AMOS dataset. (a-c) Segmentation results for one case of three transverse
sections and (d) 3D segmentation views. As seen,better segmentation is achieved at the boundaries by our method, highlighted in yellow
dashed boxes.

C. Detailed Algorithm. criminative features, allowing them to fully enjoy the ad-

vantages of VCL. This further facilitates the generation of
Algorithm | provides the pseudocode for our method. By higher quality pseudo-labels.

DVCL, we encourage unreliable voxels to learn more dis-



Methods Mean Dice for each organ Mean Mean
MYO LAC RAC LVC RVC AA PA Dice Jaccard
10% labeled data (labeled:unlabeled=2:10)
DAN [18] 89.19 69.26 80.65 68.50 84.23 83.83 44.57 || 74.324+0.84 61.7741.53
MT [13] 87.83 77.09 81.65 77.16 84.78 90.88 69.46 || 81.274+0.57 69.4940.65
S| UA-MT [17] 89.50 77.67 84.84 78.30 86.10 92.02 69.35|| 82.5440.84 71.284+0.97
t SASSnet [8] 89.66 77.62 8561 80.92 8543 9099 59.20|| 81.35+0.45 70.154+0.34
S| DTC[10] 89.29 77.83 8494 78.70 86.24 90.23 71.74 || 82.71+£0.50 71.3240.57
CPS [2] 90.10 79.00 8545 80.84 87.98 90.71 70.82 || 83.56+0.22 72.631+0.40
CLD [9] 90.82 80.88 88.70 7894 8722 9249 7048 || 84.22+0.80 73.8440.85
DHC [14] 90.40 77.14 85.87 78.64 8891 89.99 74.71 83.671+0.80 72.83+1.13
MagicNet[ 1] 87.99 74.14 8503 75.38 8393 90.03 59.51|| 79.43+0.67 67.56+1.11
UGPCL [15] 90.70 78.41 84.58 78.33 86.86 91.81 77.05|| 83.96+0.36 73.1240.48
@ U2PL [16] 90.16 80.52 87.50 77.29 88.38 93.00 73.41 84.32+0.18 73.704+0.26
E BaCon [5] 90.80 79.82 85.64 80.49 87.21 91.76 73.54 || 84.18+0.12 73.484+0.11
=| CCL [4] 90.61 80.04 87.41 80.87 87.25 92.16 68.11 83.784+0.31 73.1640.35
Ours 91.27 82.54 89.01 80.08 8825 93.21 80.43 || 86.40+0.38 76.561+0.58
50% labeled data (labeled:unlabeled=6:6)
DAN [18] 90.46 82.08 87.21 77.20 87.64 89.35 73.16 || 83.87+£0.80 73.11%1.10
MT [13] 90.57 84.49 8827 80.82 88.31 92.68 77.65|| 86.11£0.20 76.18+0.15
S| UA-MT [17] 90.94 84.59 8847 8227 88.36 93.12 77.30|| 86.43+0.07 76.711+0.19
i SASSnet [8] 88.73 79.02 8589 79.30 85.60 91.14 71.59|| 83.04+0.40 71.8240.60
S| DTC[10] 91.20 84.23 88.03 80.95 88.36 90.79 77.35|| 85.84+0.22 75.814+0.39
CPS [2] 91.42 8440 88.90 82.10 8893 9299 76.89 || 86.52+0.15 76.8440.15
CLD [9] 91.12 8549 90.54 7998 8892 9137 80.63 || 86.87+£0.33 77.2940.46
DHC [14] 90.75 84.93 89.34 81.83 88.69 93.72 79.23|| 86.93+0.14 77.4340.23
MagicNet[ 1] 91.27 83.58 87.75 79.07 89.21 90.12 66.07 || 83.87+0.65 73.5240.57
UGPCL [15] 91.76 85.35 89.56 80.13 88.04 93.36 76.89 || 86.44+0.47 76.72+0.67
d U2PL [16] 91.07 85.99 90.81 8191 88.14 93.66 75.17 || 86.68+0.07 77.10%+0.11
i BaCon [5] 91.26 8491 8942 82.12 88.05 93.13 7498 || 86.27+0.10 76.4440.14
=| CCL [4] 91.02 84.44 8751 8143 87.60 89.76 77.54 || 85.62+0.66 75.31+0.93
Ours 91.48 85.82 91.18 83.12 8858 94.18 83.15|| 88.2240.08 79.3310.14

Table 3. Quantitative results (mean Dice for each organ, mean and SD of Dice, and mean and SD of Jaccard) on two settings of MMWHS
dataset. ‘w/o VCL’ or ‘w/ VCL’ indicates whether the SSL. methods combined with VCL or not. Best results are boldfaced.

D. More Experimental Results.

In our experiments, the segmentation performances using
two standard evaluation metrics: the Dice and the Jaccard
index (referred to as Jaccard). The Dice and Jaccard val-
ues range from O to 1, with higher scores indicating more
accurate segmentation. To reduce the randomness of net-
work training, experiments are calculated in triplicate for
all methods and the mean and standard deviation (SD) of
the Dice and Jaccard values are calculated.

FLARE 2022. For the FLARE 2022 dataset, we train
the semi-supervised models using training sets with labeled
data proportions of 50% and 10%. The supervised 3D U-
Net is trained using all 42 labeled data cases (Fully). Ta-
ble.1 presents the qualitative results, including the mean

Dice for each organ, as well as the mean and SD of both
Dice and Jaccard. Compared to the supervised 3D U-Net,
all semi-supervised methods achieve higher mean Dice and
mean Jaccard by utilizing the unlabeled data. Our method
significantly outperforms all the other methods, achieving a
superior state-of-the-art performance.

AMOS. To further validate our method, we conduct exper-
iments on the AMOS dataset. Table.2 presents the quali-
tative results, including the mean Dice for each organ, as
well as the mean and SD of both Dice and Jaccard. We run
the state-of-the-art semi-supervised segmentation methods
and our methods on the second medical image segmenta-
tion dataset (AMOS [6]) under various label ratios (e.g.,
10%, 50%). Our method achieves superior segmentation
performance compared to all other approaches.
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Figure 3. Visualization of the segmentation results for the MMWHS dataset. (a-c) Segmentation results for one case of three transverse
sections and (d) 3D segmentation views. As seen,better segmentation is achieved at the boundaries by our method, highlighted in yellow

dashed boxes.
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Figure 4. Visualization of the segmentation results for the BTCV dataset. (a-c) Segmentation results for one case of three transverse
sections and (d) 3D segmentation views. As seen,better segmentation is achieved at the boundaries by our method, highlighted in yellow

dashed boxes.

MMWHS. To further validate our method, we conduct ex-
periments on the MMWHS dataset. Table.3 presents the
qualitative results, including the mean Dice for each organ,
as well as the mean and SD of both Dice and Jaccard. We
run the state-of-the-art semi-supervised segmentation meth-
ods and our methods on the third medical image segmenta-
tion dataset (MMWHS [19]) under various label ratios (e.g.,
10%, 50%). Our method achieves superior segmentation
performance compared to all other approaches.

BTCYV. To further validate our method, we conduct exper-
iments on the BTCV dataset. Table.4 presents the quali-
tative results, including the mean Dice for each organ, as
well as the mean and SD of both Dice and Jaccard. We run
the state-of-the-art semi-supervised segmentation methods

and our methods on the fourth medical image segmentation
dataset (BTCV [7]) under various label ratios (e.g., 10%,
50%). Our method achieves superior segmentation perfor-
mance compared to all other approaches.

E. More Qualitative Visualization.

We illustrate representative qualitative results of our method
and different methods on the FLARE 2022 (Fig.1), AMOS
(Fig.2), MMWHS (Fig.3), and BTCV (Fig.4) datasets. It is
evident that DVCL produces more accurate predictions by
encouraging unreliable voxels to learn more discriminative
features. This helps address the issues of ambiguous organ
categories that often lead to confusion in baseline models.



Methods Mean Dice for each organ Mean Mean
Spl Rkid L.kid Gal Eso Liv Sto Aor IVC P&S Pan RAG LAG Dice Jaccard
10% 1ahel, Jdata (1 hel, J:u Tlahelod- ,:12)
3D U-Net [3] 0.25 3144 3099 0.00 0.00 47.78 3.76 41.07 994 367 041 0.00 0.02 13.03£0.15 8.29+0.10
DAN [18] 59.98 82.65 77.08 436 0.71 80.22 8.69 4688 60.62 3047 11.36 18.65 8.30 || 37.69+£1.48 29.06+t1.11
d MT [13] 64.00 8225 71.56 16.80 27.09 8593 8.64 8029 60.62 37.63 29.79 1490 7.52 || 45.16£1.94 35.20+1.42
i UA-MT [17] 7546 80.28 7322 1195 1447 8474 9.89 79.79 70.66 37.14 20.86 14.36 11.39| 44.94+1.17 35.6940.84
3 SASSnet [8] 74.17 80.94 80.02 16.25 6.37 8570 6.28 7726 69.04 40.79 32.16 29.83 1.67 || 46.19£1.09 36.98+0.88
DTC [10] 76.05 78.89 78.16 10.25 3550 86.14 7.05 8424 70.72 32.19 2222 36.71 3.30 || 47.80+1.42 38.19+1.10
CPS [2] 75.56 77.34 7733 890 18.14 86.16 13.48 8298 67.81 4329 21.24 31.48 15.97| 47.67£0.76 37.86+0.41
CLD [9] 69.84 8248 71.53 23,56 9.92 86.14 1441 83.15 69.04 43.71 31.03 38.94 13.13| 48.99+0.92 38.73+0.81
DHC [14] 72.12 80.80 80.79 16.38 24.63 85.61 15.29 83.02 6229 43.46 29.70 3578 7.65 || 49.04+0.35 38.68+0.17
MagicNet [1] 71.86 82.00 79.35 16.30 34.69 86.18 12.00 83.93 64.56 42.66 30.60 37.61 10.26| 50.154+0.58 39.504+0.54
UGPCL [15] 7543 81.72 78.66 13.43 6.89 87.01 9.04 8446 72.62 34.85 28.03 29.84 3.73 || 46.59+1.29 37.72+1.06
d U2PL [16] 7248 80.69 79.94 10.21 30.93 86.93 12.96 8498 64.67 40.14 2453 28.54 12.53|| 48.424+0.68 38.44+0.23
= BaCon [5] 76.02 82.64 7478 15.67 2233 8435 9.73 8258 69.35 4420 2556 3221 3.26 || 47.90+1.50 38.20+1.12
= CCL [4] 76.20 80.37 77.95 13.63 29.25 8558 12.22 81.36 65.88 37.94 29.18 26.14 8.08 || 47.98+1.43 37.84+1.08
Ours 76.40 83.16 75.08 21.02 44.27 87.32 11.73 85.92 73.46 44.97 30.61 42.02 11.87 | 52.91+£0.22 42.43+0.19
50% labeled data (labeled:unlabeled=12:12)
3D U-Net [3] 61.26 75.08 71.21 8.08 24.06 81.37 10.69 78.87 55.11 3256 11.04 2.66 696 || 39.92+1.17 30.70+1.23
DAN [18] 74.07 88.80 88.56 20.19 26.10 85.69 36.81 78.79 59.77 5295 50.12 48.31 40.16|| 57.72+1.21 45.94+1.15
d MT [13] 77.10 88.55 87.19 11.92 66.83 86.01 31.71 87.84 77.10 47.28 4245 36.18 41.94| 60.16+0.95 48.98+0.46
i UA-MT [17] 7534 86.48 87.71 12.40 57.77 87.63 28.83 88.30 75.48 44.36 37.65 38.01 33.42|| 57.95+0.80 47.05+0.50
3 SASSnet [8] 7648 90.28 87.96 12.01 56.46 87.64 3556 89.29 78.34 51.25 51.73 4297 44.87| 61.91+£0.12 50.75+0.12
DTC [10] 77.85 86.85 89.45 12.17 64.13 88.81 29.97 89.02 74.62 4698 41.73 52.61 35.89| 60.77+0.96 49.714+0.67
CPS [2] 76.54 8293 87.82 6.66 63.06 88.00 31.44 89.13 77.26 49.79 4548 49.78 44.73|| 60.97+0.43 49.744+0.51
CLD [9] 7596 8827 90.20 1520 54.09 82.62 33.63 87.43 76.16 49.84 50.15 58.00 37.02|| 61.42+0.84 49.82+0.80
DHC [14] 76.65 88.71 87.19 10.00 69.03 80.67 33.06 86.43 7324 48.67 4797 5397 40.26| 61.22+1.57 49.43+1.42
MagicNet [1] 77.01 88.72 86.56 17.47 67.24 7652 37.11 87.36 76.74 4795 47.63 4895 41.73|| 61.61+£0.34 49.344+0.66
UGPCL [15] 75.69 85.70 88.82 5.86 6198 86.13 36.38 88.80 74.13 46.61 34.14 38.84 44.39| 59.044+0.84 48.08+0.79
d U2PL [16] 76.59 87.67 87.72 19.44 63.14 87.98 27.53 8949 76.45 47.06 4470 44.66 44.93| 61.34+0.27 50.134+0.33
= BaCon [5] 7591 88.17 87.04 11.15 66.55 87.77 34.52 88.14 7576 45.18 37.69 5299 43.18| 61.084+0.04 49.714+0.10
= CCL [4] 77.14 87.77 89.53 581 67.04 86.75 3191 88.54 7835 43.50 36.69 53.75 38.41| 60.404+0.89 49.40+0.86
Ours 78.44 88.50 89.83 25.37 67.75 89.57 42.23 88.54 75.85 54.66 52.69 50.31 45.16| 65.30+£0.78 53.50+0.70

Table 4. Quantitative results (mean Dice for each organ, mean and SD of Dice, and mean and SD of Jaccard) on two settings of BTCV

dataset. ‘w/o VCL’ or ‘w/ VCL’ indicates whether the SSL methods combined with VCL or not. Best results are boldfaced.

K Neighbors K’ Outsiders H Mean Dice  Mean Jaccard
5 5 82.38+0.27 71.07£0.25
5 10 82.92+0.45 71.81+£0.34
10 10 83.24+0.17 72.2440.17
10 15 84.1540.07 73.6210.29
15 15 83.81+£0.12 73.12+0.09

Table 5. Ablation study on the number of neighbors and outsiders.

F. More Ablation Study for Hyper-parameters.

To validate the robustness of our method, we conduct abla-
tion studies on the FLARE 2022 dataset by varying sev-
eral hyperparameters, including the number of neighbors
and outsiders, variance factor «, temperature coefficient 7,
number of negative candidates N, anchor voxels M, Scalar
B, contrastive loss weight \., and dimensionality of voxel-
level features V.

Number of Neighbors and Outsiders. As shown in Ta-
ble.5, the optimal values are K=10 and K’=15, which yield
the best segmentation results. When K is small, the query

has fewer neighbors. Although these neighbors have high
similarity, they may contain limited semantic information.
Conversely, when K is large, the number of neighbors in-
creases, potentially introducing misclassified samples with
high similarity but belonging to different categories.

Variance Factor «. In the entropy-based selection module,
« is the variance factor influences the proportion of reliable
and unreliable voxels. As shown in Fig.5(a), our method
trained with o = 0.5 obtains the best segmentation results.

Temperature Coefficient 0. In the calculation of L4,
o plays a significant role in adjusting the emphasis on
challenging samples. To evaluate the effect of different
o values, ablation experiments are performed using o €
{0.05,0.1,0.5,1,5}. The results (Fig.5(b)) indicate that
7 = 1 achieves optimal segmentation performance.
Number of Negative Candidates N and anchor voxels
M. N and M are used to calculate Ly4c. As shown in
Fig.5(c), the Ly, trained with N = 50 and M = 256
achieves the best segmentation results.

Scalar 3. Scalar 3 is used to balance Lo and Lg,c. As
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Figure 5. Quantitative comparisons of different hyper-parameters.
(a-f) present mean Dice and mean Jaccard generated by the our
method trained with different v, 7, M/N, 3, A¢, and V, respec-
tively.

shown in Fig.5(d), 8 = 0.3 obtains the highest mean Dice
and mean Jaccard.

Contrastive Loss Weight \.. ). determines the contri-
bution of contrastive loss to the total loss. As shown in
Fig.5(e), A = 0.1 obtains the best segmentation results.
Dimensionality of Voxel-level Features ). V' determines
the dimensionality of voxel-level features generated by
the feature head. Experiments are conducted using V €
{32,64,128,256,512 }. The results (Fig.5(f)) demonstrate
that YV = 256 achieves the optimal segmentation perfor-
mance.

G. The Complete Derivation of The Formula .

Proof of Eq.19 in our manuscript:
N (Ch | tm, 0s)

log — T T
N(DE | rm, 0s)
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Since the logarithm of a product is equal to the sum of the loga-
rithms, we have
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Consider the last term of Eq.1 row 5:
(K = K)log( Y _e"mr)
rq€UR
T
Zr ePmPa
= (K — K')log(|Ug| - =XaSU%
Ul
T
/ rqugpmpq
= (K — K')(log |Ur| + log( )
|UR|

Using Jensen Inequality log (E[X]) > E[log(X)], we have
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The expression p.,p, represents the inner product between the
probability vector of r,, and the probability vectors of all r,, in
Ur. Since r,, and r,, are not identical, it follows that pﬁpq <1,

and thus)

T
PmPq -1, We have
rq€URIUR| ’
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Substituting Eq.2 into the last term of Eq.1 row 5 gives
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