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6. Detailed Architecture
In the MeasureXpert pipeline (Figure 1), we employ four
encoder blocks (within light grey rectangles), two multi-
decoder blocks (within yellow rectangles), and five decoder
blocks (consisting of three green rectangular slabs. Each
green rectangular slab represents a fully connected layer).
All encoder blocks share a common structure, as do the sub-
decoders within the multi-decoders and the other decoders.
We begin by introducing the encoder and decoder struc-
tures, followed by a step-by-step formulation of the over-
all architecture. Then, we establish the body segmentation
and introduce the corresponding notations to help under-
stand multi-decoder blocks. Lastly, we provide a detailed
formulation of the loss functions.

6.1. Encoder
The encoder process begins with a specific point set
passing through an MLP consisting of two layers with
128 and 256 neurons, denoted as MLP 256

128 . Following
this MLP, a max pooling operation is applied to obtain a
global feature vector of the input point set. To enrich the
feature representation, this vector is concatenated with the
pre-pooling output from the MLP. And the concatenated
features are processed by a second MLP with layers
of 512 and 1024 neurons, denoted as MLP 1024

512 . A final
max pooling operation solidifies the ultimate global feature.

6.2. Decoder
The decoder consists of three fully connected layers. The
first two layers consist of 1024 neurons, denoted as FC1024

1

and FC1024
2 , respectively, while the third layer has neurons

depending on what we want to output. If we want to obtain
a point set, the number of neurons is equal to three times the
number of points N (to account for the x, y, and z coordi-
nates), denoted as FC3×N

3 , while if we want to output val-
ues, the number of neurons is the number of values, denoted
as FC

|values|
3 . Additionally, if the last layer is FC3×N

3 , a
reshape operation is executed to output the 3D coordinates
of the expected point set.

6.3. TrioNet
Encoder. TrioNet proceeds from two partial point clouds
Sf and Sb of one individual from front- and back-view, re-
spectively. The shared encoder function E with correspond-
ing weights (Eq. 2) follows the following steps:

MLP 256
128 (Si) = Ωi

1, i ∈ {f, b} (10)

Maxpool(Ωi
1) = Ωi, i ∈ {f, b} (11)

Maxpool(MLP 1024
512 ([Ωi

1,Ω
i])) = F i, i ∈ {f, b} (12)

extracting the global features Ff and Fb, where Ωi
1 repre-

sents the local features, Ωi denotes the global feature, and
F i is the final feature of the input point cloud.
Input branches. Each sub-decoder D′ via corresponding
weights to decode the global feature to the corresponding
posed body point cloud following:

D′(F i|ωi
x) = FC3×Nx

3 (FC1024
2 (FC1024

1 (F i))).reshape(−1, 3)

= S̃i
x, i ∈ {f, b}

(13)
where x ∈ {T,H,RA,LA,RL,LL} represents the spe-
cific segment of body S̃ix (refer to Section 6.5), while ωi

x

is the weights for S̃ix decoder and Nx = |S̃ix|. All six
segments form the comlpete posed body point cloud S̃i,
i ∈ {f, b}.
Shape branch. The shape branch initiates with USV ex-
traction (Algorithm 1) to extract Fs. In this process, the
shared regression step utilizes a decoder block with corre-
sponding weights following:

Regression(Ff ) = FC512
3 (FC1024

2 (FC1024
1 (Ff ))) = ω⃗f ,

(14)

Regression(Fb) = FC512
3 (FC1024

2 (FC1024
1 (Fb))) = ω⃗b.

(15)
to obtain the two PIVs ω⃗f and ω⃗b.
The extracted USV Fs, extracted via Algorithm 1, is fed
into a decoder block to learn the function Eq. 3 mentioned
in Section 3.1:

D(Fs) = FC3×10364
3 (FC1024

2 (FC1024
1 (Fs))).reshape(−1, 3)

= [Tc,Lmkc]
T := T Lc.

(16)
Therefore, the reshaped output has 10364 points, in which
the first 6890 points are T-posed body mesh vertices Tc,
and the last 3456 points constitute 21 groups of landmarks
Lmkc (refer to Section 7).

6.4. OR-Net
The offset prediction takes T Lc as input and outputs the
offsets to be added to T Lc, yielding refined coordinates T L



Figure 6. Examples of body segmentation and corresponding no-
tations.

for the vertices T and landmarks Lmk of the T-posed mesh
following:

MLP 256
128 (T Lc) = ΩTL1 , (17)

Maxpool(ΩTL1) = ΩTL, (18)

Maxpool(MLP 1024
512 ([ΩTL1 ,ΩTL])) = FTL, (19)

T L = T Lc+FC3×10364
3 (FC1024

2 (FC1024
1 (FTL))).reshape(−1, 3)

(20)
where ΩTL1 represents the local features, ΩTL denotes the
global feature, and FTL is the final feature of T Lc.
The refined landmarks, denoted as Lmk = {li}21i=1, consist
of 21 groups of points that are then fed into the subsequent
encoder-decoder regression module to output measurement
values following:

MLP 256
128 (li) = Ωli1, (21)

Maxpool(Ωli1) = Ωli , (22)

Maxpool(MLP 1024
512 ([Ωli1,Ωli ])) = Fli , (23)

Regression(Fli) = FC1
3 (FC1024

2 (FC1024
1 (Fli))) = Vi,

(24)
where i ∈ {1, 2, ..., 21}, Ωli1 represents the local features,
Ωli denotes the global feature, and Fli is the final feature of
li.

6.5. Body segmentation
As Figure 6 shows, a T-posed SMLP mesh can be
manually segmented into six different segments P =
{T,H,LA,RA,LL,RL}, where T is the torse, H is the
head, LA is the left arm with hand, RA is the right arm
with hand, LL is the left leg with foot, and RL is the
right leg with foot. Considering all SMLP meshes have
the same topology, based on the previous manual segmen-
tation, an arbitrary SMLP body can be segmented auto-
matically. Taking the ground-truth posed body point sets

S̃igt = {s̃igtj |j = 1, 2, . . . , M̃ i
gt}, i ∈ {f, b}, as example,

after segmentation, we classified S̃igt into: the torse point
set S̃igtT , the head point set S̃igtH , the left arm with hand
point set S̃igtLA

, the right arm with hand point set S̃igtRA
,

the left leg with foot point set S̃igtLL
, and the right leg with

foot point set S̃igtRL
. The point s̃igtx,j in each segment S̃igtx

can be classified into two types: common points and bound-
ary points. Common points are exclusive to S̃igtx , while
boundary points are shared by S̃igtx and S̃igty , where x ̸= y.
We use Bi

gtx to represent the set of boundary point pairs
(bigtx,j , b

i
gtT ,j), where Bi

gtx = S̃igtx ∩ S̃
i
gtT , x ∈ P \ {T},

and Bi
gtx ∈ Bi

gt = {S̃igtH ∩ S̃
i
gtT , S̃

i
gtRA

∩ S̃igtT , S̃
i
gtLA

∩
S̃igtT , S̃

i
gtRL

∩ S̃igtT , S̃
i
gtLL
∩ S̃igtT }. Each pair includes two

points: the first point, bigtx,j , is a boundary point of one spe-
cific body part excluding the torso, and the second point,
bigtT ,j , is a corresponding boundary point on the torso.

6.6. Loss functions

We give the formulations of the loss functions mentioned in
Section 6.6.
TrioNet. For two input branches, they share the same loss
functions: local loss (Eq. 25), global loss (Eq. 26), and
inter-connective loss (Eq. 27).

Li
part =

∑
x∈P

1

|S̃i
x|

∑
s̃ixj

∈S̃i
x

||s̃ixj
− s̃igtx,j ||2, (25)

Li
global =

1

|S̃i|

∑
s̃ij∈S̃i

min
s̃igtj

∈S̃i
gt

∥s̃ij − s̃igtj∥
2

+
1

|S̃i
gt|

∑
s̃igtj

∈S̃i
gt

min
s̃ij∈S̃i

∥s̃igtj − s̃ij∥2,
(26)

Li
boundary =

∑
x∈P\{T}

1

|Bi
x|

∑
(bixj

,bi
Tj

)∈Bi
x

||bixj
− biTj

||2, (27)

where P = {T,H,LA,RA,LL,RL} is the body segments
set, s̃ixj

∈ S̃ix represents the predicted body segment point

corresponding to the ground-truth point s̃igtx,j ∈ S̃
i
gtx , S̃i

denotes the set of all predicted body points, and (bixj
, biTj

) ∈
Bi

x is the boundary point pair corresponding to the ground-
truth pair (bigtx,j , b

i
gtT ,j) ∈ Bi

gtx . Additionally, i ∈ {f, b}
indicates whether the target of supervision for the loss is the
front (f ) or the back (b) of the body.
For the shape branch, we formulate Lc

tpose and Lc
lmk as fol-

lowing:

Lc
tpose =

1

|Tc|

|Tc|∑
i=1

||v′i − vgti ||
2, (28)



Lc
lmk =

21∑
i=1

1

|l′i|
∑
x∈l′i

min
y∈lgti

∥x−y∥2+ 1

|lgti |
∑

y∈lgti

min
x∈l′i

∥y−x∥2,

(29)
where vgti ∈ Tgt is a vertex in the ground-truth T-posed
body mesh corresponding to the predicted vertex v′i ∈ Tc,
while lgti ∈ Lmkgt is the ground-truth point set corre-
sponding to the predicted point set of one level landmarks
l′i ∈ Lmkc.
OR-Net. The loss functions to supervise mesh Ltpose and
landmarks Llmk optimization are similar to previous pre-
diction loss functions Lc

tpose and Lc
lmk, respectively.

Ltpose =
1

|T |

|T |∑
i=1

||vi − vgti ||
2, (30)

Llmk =

21∑
i=1

1

|li|
∑
x∈li

min
y∈lgti

∥x−y∥2+ 1

|lgti |
∑

y∈lgti

min
x∈li

∥y−x∥2,

(31)
where vi ∈ T is a refined vertex of the predicted T-posed
mesh, while li ∈ Lmk is a refined point set of one level
predicted landmarks. Beside Ltpose and Llmk, OR-Net has
another L1 loss to supervise value predictions defined as:

Lvalue =

21∑
i=1

||Vi − Vgti ||, (32)

where Vgti ∈ Vgt represents the ground-truth measurement
value corresponding to Vi ∈ V .

7. Datasets
In this section, we first present the detailed synthesizing
process of the BWM dataset, utilized for training, valida-
tion, and testing. Then we outline the extension process
applied to two open-access real-world datasets, FAUST [6]
and 4D-Dress [59].

7.1. BWM dataset
Following Figure 2, the synthesizing process of the BWM
has four steps: i) unclothed bodies generation, ii) dressing
the posed unclothed bodies, iii) rendering the dressed
bodies, and iv) measurement annotation.
Unclothed bodies. We initiate our process by utilizing
the SMPL model to generate synthetic unclothed human
body meshes. We utilize the extensive pose and shape
parameters provided by the SURREAL dataset [57] in our
generation process. By randomly combining these pose and
shape parameters, we create tuples of human bodies, each
consisting of three meshes: two with randomly arbitrary
poses S̃fgt and S̃bgt, and one in a canonical ”T” pose Tgt.

Notably, all bodies within a tuple share identical shape
parameters but differ in pose parameters.
Dressing. To simulate clothed human bodies, we adopt the
method proposed in the BUG dataset [20]. We apply the
same clothing mesh to the two posed bodies within each
tuple, effectively generating clothed body models while
maintaining consistent underlying body shapes.
Rendering partial point clouds. Subsequently, we use
BlenSor [18] to simulate the scanning process, rendering
partial point clouds Sf and Sb from the front and back
views of the clothed, posed bodies, respectively. We
employ a single-camera scanner that incorporates inherent
noise perturbations typical of real-world depth images.

Ground-truth measurement annotation. In accordance
with the ISO 8559 standard [25], we establish 16 mea-
surement levels on the bodies in the canonical pose (see
Figure 8). These levels include the bust, underbust, waist,
hip, middle thighs, knees, calves, upper arms, elbows,
and wrists. For fashion design, the measurement should
also consider the preferred waist level [49], which means
the level a person would prefer to wear the waist of his
or her pants. Additionally, we further define five more
measurement levels in the abdominal region as Figure 2
shows, centrally located on the torso, to accommodate these
discrepancies. Therefore, we establish 21 measurement
levels in total.
We employ plane at each measurement level to segment
the unclothed body in the canonical pose to obtain the
measurement landmarks Lmkgt = {lgti}21i=1. To facilitate
training, we manually assigned a fixed number of land-
marks of each level through random sampling based on the
variation in girth. Specifically, 256 landmark points are
allocated for the bust, underbust, hip, and six waist levels;
128 landmark points are assigned to the legs, including
two mid-thigh, two knee, and two calf levels; and 64
landmark points are designated for the arms, covering two
upper arm, two elbow, and two wrist levels, resulting in
a total of 3456 landmark points. We then extract precise
anthropometric measurements Vgt = {Vgti}21i=1 via the
function Convex Hull in OpenCV [8] working on the
corresponding landmark point set {lgti}21i=1.
In summary, each sample in the BWM includes three
unclothed body models: two in different postures and one
in a canonical posture, accompanied by two clothed body
mesh with scans (front and back views) corresponding to
the posed unclothed bodies and measurement landmarks
with ground-truth values. In addition to estimating body
shape under clothing, the proposed dataset is also suitable
for investigating other research problems such as non-rigid
point cloud registration and point cloud completion. In this
study, we generated 150K male and 150K female data
groups. We split the dataset into 99% for training, 0.3% for



Figure 7. Examples of data we used in our experiments from BWM, extended FAUST and 4D-Dress.

Figure 8. Measurement definitions from ISO8559 [25]. Besides
the first four definitions on the torse, the other six definitions are
defined on both the right and left sides.

testing, and 0.7% for validation.

7.2. Real-world datasets extension

4D-Dress. The 4D-Dress dataset [59] consists of high-
resolution 4D scans of clothed humans captured over
time, providing dynamic image and mesh sequences that
represent body movements and clothing deformations. In
addition to the dressed body meshes, the dataset includes
underlying SMPL body models with associated pose and
shape parameters. However, unlike the BWM dataset,
4D-Dress does not provide body models in a canonical
posture, partial dressed body scans, or anthropometric
measurements. To obtain the underlying body model in a
canonical T-pose, all pose parameters can simply be set
to zero within the SMPL model. For the scanning and
measurement, we adopt the RealPartialScan [22] method to
extract the front and back views from the dressed meshes
and OpenCV to calculate the corresponding anthropometric

values.
FAUST. The FAUST dataset [6] contains high-resolution
3D scans of 10 unclothed human bodies in various poses,
along with their corresponding fitted SMPL models.
However, FAUST does not provide the SMPL parameters
(shape and pose), preventing direct acquisition of T-posed
mesh for each subject by simply setting the pose parameters
to zero. To overcome this, we employ PoseNormNet to
perform posture normalization on the posed SMPL models
for each subject, bringing them into a canonical posture
(”T” pose). Once normalized, we apply the Iterative Closest
Point (ICP) to align all the normalized models for the same
subject. We then compute the average coordinates for each
vertex across all the normalized models to obtain a ”mean”
model, which serves as the canonical T-posed mesh for
the subject. For anthropometric measurements, we follow
the approach used in the BWM dataset, measuring each
normalized model at predefined levels. The mean values
across all models at each measurement level are taken as
the subject’s anthropometric values. For the partial scans,
we also use the RealPartialScan [22] method to extract
the front and back views from the real-world meshes and
export the resulting point clouds.

8. Experiments

This section of supplementary materials is organized into
three parts: (i) additional content for comparative experi-
ments, (ii) demonstration of the by-products generated by
this method, and (iii) extended ablation studies and re-
sults, providing a more comprehensive verification of the
method’s scientific validity and effectiveness.



Figure 9. These figures present box plots of absolute errors (in cm) for body measurements on the FAUST and 4D-Dress datasets across
different image-based methods: POCO [15], NLF [53], PyMAF-X [65], BEDLAM [5] PyMAF [64], and ours.

8.1. Evaluation Metrics

As supplementary materials for Section 4, we continue to
use absolute errors to evaluate the error of the measured val-

ues. For ablation studies, in addition to Chamfer Distance,
we incorporate Mean Squared Error (MSE) and Mean Ab-
solute Error (MAE) to provide a more comprehensive and



Measurement Ours BEDLAM [5] NLF [53] POCO [15] PyMAF [64] PyMAF-X [65]
Unit (CM) Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

bust 3.25 1.62 13.33 5.68 7.3 4.42 9.02 7.32 2.93 5.23 7.1 3.58
hip 2.38 1.24 10.52 5.78 1.93 2.45 4.34 3.74 4.78 2.38 7.14 2.75

left calf 1.12 0.52 3.74 1.45 0.58 0.71 1.54 0.85 1.67 0.7 2.52 1
left elbow 1 0.43 2.66 1.32 1.05 0.76 1.36 1.3 0.97 0.85 1.89 1.17
left knee 0.68 0.46 2.7 1.45 0.59 0.76 1.17 1.05 1.31 0.64 1.88 0.74

left middle thigh 1.79 0.92 5.88 3.45 1.16 1.36 3.19 1.78 3 1.36 3.58 1.02
left upper arm 1.06 0.64 6.48 2.94 1.23 1.53 2.54 2.58 1.98 1.61 3.8 1.76

left wrist 0.58 0.21 1.01 0.46 0.54 0.44 0.69 0.62 0.5 0.37 0.74 0.49
right calf 1.15 0.48 3.23 1.38 0.56 0.74 1.45 0.85 1.47 0.68 2.14 0.8

right elbow 0.73 0.38 3.46 1.52 0.86 0.95 1.47 1.55 1.17 0.96 2.21 1.11
right knee 0.72 0.45 3.01 1.38 0.59 0.81 1.19 0.99 1.28 0.63 2.11 0.85

right middle thigh 1.77 0.88 6.43 3.38 1.15 1.4 3.22 1.74 3.05 1.36 3.82 1.24
right upper arm 1.2 0.59 6.29 2.97 1.41 1.57 2.5 2.78 1.83 1.68 3.65 1.66

right wrist 0.65 0.23 1.07 0.34 0.73 0.42 0.77 0.62 0.54 0.35 0.82 0.45
under bust 2.95 1.5 15.93 4.3 6.06 4.5 8.18 7.5 3.21 4.92 10.81 4.12

waist1 1.99 1.4 21.06 5.99 3.23 4.43 5.09 6.63 5.71 3.83 16.82 4.9
waist2 2.3 1.44 21.51 5.71 3.41 4.58 5.67 7.4 5.42 4.38 17.63 5.24
waist3 2.09 1.47 22.15 5.92 3.85 5.09 6.34 8.33 5.09 4.92 17.73 5.17
waist4 2.17 1.42 21.8 5.97 4.46 5.3 6.67 8.5 4.59 5.03 16.82 5.04
waist5 2.33 1.4 20.06 5.64 5.02 5.08 6.92 8.31 4.01 5.02 15.01 4.84
waist6 2.49 1.43 18.47 5.43 5.36 4.73 7.09 8.03 3.57 4.97 13.38 4.78

Table 1. Comparison of measurement errors across different image-based methods on FAUST.

Measurement Ours BEDLAM [5] NLF [53] POCO [15] PyMAF [64] PyMAF-X [65]
Unit (CM) Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

bust 1.55 0.76 12.32 8.49 5.47 3.23 4.18 1.89 3.29 2.3 11.1 6.52
hip 1.04 0.58 9 6.53 6.1 3.21 5.63 3.32 4.89 3.24 7.9 6.84

left calf 0.35 0.31 2.64 1.78 1.91 0.97 1.66 0.93 1.41 0.88 2.26 1.81
left elbow 0.28 0.22 2.44 1.81 1.45 0.9 1.16 0.76 0.96 0.65 2.23 1.73
left knee 0.45 0.3 2.69 1.93 2.13 1.06 1.84 1.09 1.56 1.06 2.32 1.96

left middle thigh 0.82 0.45 5.3 3.42 3.33 1.43 3.05 1.48 2.75 1.52 4.63 2.71
left upper arm 0.81 0.38 4.37 3.29 1.95 1.09 1.8 0.76 1.46 0.93 3.56 2.7

left wrist 0.28 0.18 1.17 0.84 0.81 0.52 0.55 0.44 0.45 0.29 1.18 0.89
right calf 0.32 0.27 2.57 1.79 1.85 0.98 1.59 0.99 1.34 0.89 2.29 1.82

right elbow 0.29 0.27 2.76 2.04 1.54 0.96 1.24 0.79 1.06 0.71 2.51 1.86
right knee 0.41 0.3 2.69 1.95 1.98 1.11 1.82 1.02 1.5 1.01 2.32 1.94

right middle thigh 0.82 0.47 5.22 3.5 3.16 1.44 3 1.35 2.72 1.44 4.35 2.78
right upper arm 0.72 0.35 4.45 3.34 1.89 1.07 1.7 0.73 1.39 0.9 3.61 2.66

right wrist 0.35 0.15 1.19 0.74 0.77 0.49 0.53 0.38 0.49 0.24 1.23 0.69
under bust 1.13 0.66 11.53 6.94 4.44 2.28 3.34 1.07 2.54 1.73 10.52 4.27

waist1 0.67 0.56 12.31 7.53 6.01 3.24 5.87 2.19 4.61 2.59 12.32 5.33
waist2 0.8 0.55 12.68 7.42 6.17 3.3 5.85 2.08 4.48 2.52 12.87 5.06
waist3 0.97 0.55 13.74 7.94 6.24 3.35 5.65 1.91 4.33 2.53 13.69 5.06
waist4 0.92 0.56 14.07 8.07 5.9 3.16 5.14 1.68 3.96 2.47 13.69 4.87
waist5 0.88 0.63 13.57 7.76 5.5 2.93 4.6 1.57 3.52 2.32 13 4.68
waist6 0.9 0.69 12.97 7.44 5.22 2.76 4.22 1.53 3.22 2.19 12.22 4.62

Table 2. Comparison of measurement errors across different image-based methods on 4D-Dress (same clothing).



Measurement Ours BEDLAM [5] NLF [53] POCO [15] PyMAF [64] PyMAF-X [65]
Unit (CM) Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

bust 1.38 0.71 12.11 3.84 6.7 4.21 4.17 2.17 3.65 2.25 12.52 6.21
hip 1.77 0.79 8.09 3.7 7.03 3.23 5.12 3.33 6.03 4.02 9 6.29

left calf 0.69 0.32 2.27 0.97 2.15 0.92 1.43 0.92 1.68 1.08 2.45 1.68
left elbow 0.7 0.26 2.35 0.91 1.75 0.96 1.13 0.78 1.18 0.69 2.53 1.6
left knee 0.91 0.29 2.36 1.09 2.37 1 1.71 1.08 1.97 1.33 2.52 1.8

left middle thigh 0.76 0.46 4.31 2.02 3.81 1.57 2.66 1.41 3.28 2.07 4.9 2.49
left upper arm 0.49 0.34 4.05 1.57 2.41 1.44 1.62 0.78 1.67 1.05 4.06 2.51

left wrist 0.69 0.24 1.17 0.42 0.96 0.51 0.65 0.35 0.57 0.22 1.33 0.83
right calf 0.87 0.4 2.23 1 2.11 0.95 1.4 0.95 1.63 1.05 2.49 1.69

right elbow 0.63 0.26 2.65 1.01 1.87 1.05 1.18 0.82 1.3 0.75 2.84 1.73
right knee 0.8 0.25 2.38 1.04 2.25 1.06 1.67 1.01 1.9 1.25 2.56 1.74

right middle thigh 0.57 0.44 4.25 2.02 3.65 1.57 2.57 1.29 3.23 2 4.63 2.56
right upper arm 0.39 0.3 4.14 1.58 2.36 1.45 1.54 0.74 1.57 1 4.12 2.48

right wrist 0.66 0.18 1.18 0.32 0.89 0.51 0.6 0.34 0.6 0.17 1.34 0.64
under bust 0.7 0.59 11.07 2.7 5.4 3.32 3.09 1.39 2.68 1.6 11.65 4.09

waist1 1.73 0.67 11.7 2.93 7.04 4.09 5.41 3.02 5.29 2.8 13.28 4.75
waist2 2 0.76 12.06 2.8 7.17 4.21 5.45 2.92 5.04 2.59 13.83 4.51
waist3 1.93 0.74 13.05 3.03 7.33 4.39 5.25 2.71 4.75 2.44 14.79 4.59
waist4 1.4 0.62 13.32 3.09 7.05 4.3 4.77 2.43 4.41 2.34 14.83 4.45
waist5 1.04 0.61 12.86 2.97 6.63 4.08 4.28 2.25 3.99 2.2 14.14 4.33
waist6 0.93 0.62 12.28 2.85 6.3 3.88 3.95 2.12 3.68 2.09 13.36 4.33

Table 3. Comparison of measurement errors across different image-based methods on 4D-Dress (unseen styles).

Measurement Ours 3DBodyNet [21] ArtEq [16] IP-Net [3] IP-Net (Partial) [3]
Unit (CM) Mean Std Mean Std Mean Std Mean Std Mean Std

bust 3.25 1.62 4.76 2.02 3.08 3.71 4.2 3.75 3.42 2.84
hip 2.38 1.24 4.69 2.4 2.32 3.78 3.8 3.33 6.36 3.14

left calf 1.12 0.52 1.77 0.87 1.02 1.32 1.6 1.55 2.82 1.33
left elbow 1 0.43 1.02 0.52 1.15 0.82 1.25 1.25 1.6 0.92
left knee 0.68 0.46 1.73 0.93 1.01 0.97 1.64 1.5 2.44 1.06

left middle thigh 1.79 0.92 2.88 1.38 1.72 2.48 2.77 2.2 4.91 2.27
left upper arm 1.06 0.64 2.24 1.16 1.88 2.19 2.3 2.29 3.53 1.75

left wrist 0.58 0.21 0.47 0.32 0.7 0.28 1.23 0.71 1.42 0.55
right calf 1.15 0.48 1.38 0.74 1.04 1.18 1.45 1.43 2.6 1.23

right elbow 0.73 0.38 1.27 0.7 1.01 1.19 1.47 1.53 2.03 1.09
right knee 0.72 0.45 1.65 0.83 1.02 0.98 1.57 1.45 2.36 1.06

right middle thigh 1.77 0.88 2.9 1.34 1.86 2.43 2.77 2.26 5.09 2.37
right upper arm 1.2 0.59 1.93 1.07 1.63 2.15 2.19 2.12 3.1 1.57

right wrist 0.65 0.23 0.49 0.36 0.75 0.3 0.68 0.57 0.63 0.38
under bust 2.95 1.5 4.67 2.19 3.07 3.45 3.6 3.86 3.98 3.05

waist1 1.99 1.4 6.42 3.76 5.22 4.5 6.11 4.87 7.76 4.89
waist2 2.3 1.44 6.1 3.78 5.3 4.35 6.06 4.78 7.38 4.9
waist3 2.09 1.47 6.01 3.75 5.43 4.38 6.1 4.71 7.1 4.96
waist4 2.17 1.42 5.55 3.58 5.14 4.33 5.71 4.64 6.35 4.77
waist5 2.33 1.4 4.92 3.04 4.42 4.08 4.68 4.36 5.09 4.03
waist6 2.49 1.43 4.52 2.59 3.86 3.96 4 3.9 4.17 3.24

Table 4. Comparison of measurement errors across different point cloud-based methods on FAUST.



Figure 10. These figures present box plots of absolute errors (in cm) for body measurements on the FAUST and 4D-Dress datasets across
different point cloud-based methods: 3DBodyNet [21], ArtEq [16], IP-Net (partial) and IP-Net [3], BodyPointNet [20], and ours.

detailed assessment.
The three metrics CD, MSE, and MAE, which we used to
evaluate the performance of body shape estimation, are de-

fined as follows:

CD(pred, gt) =
1

|pred|
∑

x∈pred

min
y∈gt

∥x− y∥2

+
1

|gt|
∑
y∈gt

min
x∈pred

∥x− y∥2
(33)



Measurement Ours BodyPointNet [20] 3DBodyNet [21] ArtEq [16] IP-Net [3] IP-Net (Partial) [3]
Unit (CM) Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

bust 1.55 0.76 5.3 1.77 8.78 6.89 10.17 4.09 4.42 5.08 7.34 5.99
hip 1.04 0.58 2.93 1.3 7.51 5.12 5.67 1.65 3.83 3.92 5.8 4.33

left calf 0.35 0.31 1.19 0.43 2.82 1.94 2.21 0.55 2.28 1.66 2.8 1.89
left elbow 0.28 0.22 0.91 0.25 2.02 1.23 1.85 0.47 1.6 1.2 2.2 1.41
left knee 0.45 0.3 0.92 0.41 2.6 1.47 2.02 0.51 1.7 1.27 2.43 1.6

left middle thigh 0.82 0.45 2.31 0.97 4.34 2.69 2.77 1.02 2.76 1.97 4.03 2.49
left upper arm 0.81 0.38 1.58 0.58 3.16 2.46 2.58 1.25 2.33 2.04 3.54 2.25

left wrist 0.28 0.18 0.41 0.19 1.06 0.52 1.08 0.17 1.5 0.66 1.72 0.73
right calf 0.32 0.27 1.13 0.4 2.6 1.66 2 0.45 2.19 1.59 2.65 1.82

right elbow 0.29 0.27 0.89 0.29 2.28 1.44 2.06 0.57 1.84 1.39 2.43 1.58
right knee 0.41 0.3 0.89 0.45 2.56 1.52 2.07 0.48 1.77 1.35 2.46 1.68

right middle thigh 0.82 0.47 2.33 0.96 4.44 2.89 2.9 1.03 2.88 2.14 4.22 2.57
right upper arm 0.72 0.35 1.66 0.61 3.15 2.5 2.68 1.25 2.3 2.07 3.45 2.23

right wrist 0.35 0.15 0.65 0.21 1.22 0.69 1.3 0.3 1.21 0.84 1.29 0.87
under bust 1.13 0.66 3.98 1.54 8.37 7.45 9.37 5.17 4.45 4.81 5.84 5.79

waist1 0.67 0.56 3.2 1.56 9.95 7.83 8.91 5.04 5.27 6.36 7.62 7.07
waist2 0.8 0.55 3.25 1.62 10.08 7.96 9.61 4.96 5.32 6.56 7.97 7.29
waist3 0.97 0.55 3.19 1.73 10.17 8.07 10.26 5.01 5.41 6.8 8.39 7.55
waist4 0.92 0.56 3.21 1.77 10.08 8.02 10.19 5.4 5.41 6.83 8.54 7.68
waist5 0.88 0.63 3.28 1.8 9.65 7.7 9.91 5.48 5.1 6.43 8.15 7.47
waist6 0.9 0.69 3.55 1.75 9.22 7.38 9.75 5.35 4.56 5.68 7.25 6.89

Table 5. Comparison of measurement errors across different point cloud-based methods on 4D-Dress (same clothing).

Measurement Ours BodyPointNet [20] 3DBodyNet [21] ArtEq [16] IP-Net [3] IP-Net (Partial) [3]
Unit (CM) Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

bust 1.38 0.71 6.38 5.76 13.75 2.76 11.71 2.13 6.47 4.9 8.05 5.36
hip 1.77 0.79 7.07 5.55 13.71 2.3 7.55 1.88 4.47 3.25 7.43 4.35

left calf 0.69 0.32 2.32 2.03 4.8 1.09 2.65 0.51 4.45 2.38 3.93 2.13
left elbow 0.7 0.26 1.74 1.41 3.48 0.59 2.29 0.39 2.92 1.47 2.89 1.43
left knee 0.91 0.29 2.48 2.04 4.48 0.76 2.63 0.73 3.51 2.04 3.49 1.9

left middle thigh 0.76 0.46 4.89 3.12 8.17 1.57 4.02 1.34 4.38 2.74 5.47 3.02
left upper arm 0.49 0.34 2.96 1.56 5.96 0.98 3.33 0.75 3.96 2.09 4.25 2.3

left wrist 0.69 0.24 0.8 0.89 1.7 0.32 1.27 0.22 2.2 0.71 2.14 0.7
right calf 0.87 0.4 2.33 2.05 4.59 0.91 2.46 0.54 4.38 2.34 3.89 2.17

right elbow 0.63 0.26 1.95 1.32 3.97 0.63 2.54 0.42 3.25 1.59 3.23 1.62
right knee 0.8 0.25 2.4 2.08 4.49 0.7 2.61 0.57 3.61 1.91 3.58 1.93

right middle 0.57 0.44 4.74 3.16 8.29 1.6 4.09 1.14 4.52 2.72 5.62 3.06
right upper 0.39 0.3 4.66 9.11 5.93 1.02 3.42 0.73 3.79 2.06 4.14 2.3
right wrist 0.66 0.18 0.88 0.95 1.82 0.27 1.41 0.21 1.91 0.74 1.81 0.83
under bust 0.7 0.59 5.81 5.02 12.59 2.92 10.36 3.24 5.39 4.03 5.83 4.38

waist1 1.73 0.67 4.7 5.28 15.54 2.84 10.59 2.87 6.63 5.15 8.26 5.45
waist2 2 0.76 5.29 4.93 15.44 2.89 11.27 2.84 7.37 5.25 8.8 5.66
waist3 1.93 0.74 5.74 4.78 15.7 2.84 11.98 2.83 7.86 5.43 9.19 5.98
waist4 1.4 0.62 5.52 4.78 15.46 2.77 11.86 3.09 7.95 5.67 9.19 6.13
waist5 1.04 0.61 5.49 4.7 14.64 2.65 11.41 3.2 7.55 5.63 8.73 6.03
waist6 0.93 0.62 5.48 4.74 13.97 2.56 11.11 3.15 6.59 5.15 7.68 5.61

Table 6. Comparison of measurement errors across different point cloud-based methods on 4D-Dress (unseen styles).

MSE(pred, gt) =
1

|pred|
∑

x∈pred,y∈gt

(x− y)2 (34) MAE(pred, gt) =
1

|pred|
∑

x∈pred,y∈gt

|x− y| (35)



where (pred, gt) ∈ {(T , Tgt), (S̃f , S̃fgt), (S̃b, S̃bgt)}.

8.2. Comparisons with different methods on real-
world datasets

Due to space limitations, the main text presents compar-
isons only with the latest (2023/2024) methods and the most
relevant approach, 3DBodyNet, which remains the most re-
cent method using partial front- and back-view scans for
body shape estimation, making it particularly relevant to
our study. However, for a more comprehensive evaluation,
our actual experiments include comparisons with relevant
works from the past five years.

In the supplementary materials, we expand the compari-
son by categorizing methods into:
• Comparison with image-based methods: POCO

(2024)[15], NLF (2024) [53], PyMAF-X (2023) [65],
BEDLAM (2023) [5] and PyMAF (2021) [64];

• Comparison with point cloud-based methods: ArtEq
(2023) [16], 3DBodyNet (2021) [21], IP-Net (partial)
(2020) taking partial point cloud as input and IP-Net
(2020) taking complete point cloud as input [3], and Body
PointNet (2020) [20].

We first outline a method for conducting fairer comparisons
across different approaches, accounting for variations in in-
put data. As MeasureXpert utilizes two inputs containing
body information from both front and back views, addi-
tional adjustments are necessary to ensure equitable com-
parison. For image-based methods, we used two RGB
images of one individual from the front- and back-views,
which can obtain two pairs of pose and shape parameters
(θ1, β1, θ2, β2). We extracted the unclothed and T-posed
body mesh of this individual from the mean shape param-
eters β1+β2

2 and measured the body mesh to obtain the an-
thropometric values. For ArtEq, IP-Net, and Body Point-
Net, which take complete point clouds as input, we predict
two posed SMPL models from the front and back complete
scans of an individual. For ArtEq and IP-Net, which output
SMPL parameters, we follow a process similar to that of
image-based methods, using the mean shape vector to gen-
erate the T-posed body as the final result. For Body Point-
Net, which directly regresses SMPL vertices instead of pa-
rameters, the predicted SMPL models lack explicit shape
parameters, preventing the same processing as image-based
methods. Instead, we first apply PoseNormNet to normalize
the two models into T-posed SMPL meshes. These posture-
normalized models are then registered and averaged vertex-
to-vertex to produce a mean T-posed model, from which the
final measurements are extracted.
Since all methods output SMPL bodies, we extract measure-
ment values from the final results as described in Section 7.1
and compare them with the ground-truth values. To ensure
a comprehensive evaluation, we use box plots to illustrate

measurement error distributions (Figure. 9 and Figure. 10)
and provide mean and standard deviation tables (Table 1-
Tabel 6) for a clearer quantitative comparison of measure-
ment accuracy across different methods. The red and bold
values in each row highlight the lowest mean and standard
deviation. These additional experiments further validate the
effectiveness and advantages of our approach.

8.3. By-products
Figure 11 and Figure 12 report the performance on pose
estimation based on FAUST and 4D-Dress dataset, respec-
tively.

8.4. Evaluation on challenging scans from low-cost
devices

In previous experiments, we relied on front- and back-view
partial point clouds extracted with RealPartialScan from
the public FAUST and 4D-Dress datasets. These datasets
were acquired in multi-camera studios equipped with pro-
fessional active-stereo or structured-light systems. The re-
sulting meshes are high-resolution, have been carefully de-
noised and topologically cleaned. Consequently, the partial
point clouds produced by RealPartialScan are relatively uni-
form, contain few holes, and have low noise.
By contrast, we captured a more challenging real-world
dataset with two consumer devices: Orbbec Astra 2
(structured-light, 2.5–3m range) and CR-Scan Otter (hand-
held, around 1m range). Astra 2 delivers a single depth
frame per view at a 2.5–3m range; the data suffers from
artefacts, missing regions, and noise. CR-Scan Otter per-
forms a one-to-two-minute handheld sweep. The working
distance for the CR-Scan Otter is within 1 meter, which
needs to be scanned by moving the scanner from head to
feet slowly to capture many small point patches and regis-
ter all the patches with global optimization to form a point
cloud. During this scanning process, unavoidable subject
micro-motion causes non-rigid mis-registration, accuracy
fluctuations, and seam gaps (Check Table 7 for more in-
formation).
The dataset consists of 42 real-world front and back scan
pairs from six volunteers: 24 pairs with an Orbbec Astra 2
and 18 pairs with a CR-Scan Otter. The resulting dataset
(Fig. 13) comprises
• 26 pairs in unconstrained everyday poses;
• 8 pairs in which the same forearm is occluded in both

views;
• 8 pairs with deliberate partial occlusion of the waist.
The results in Table 8 were obtained without any complex
post-processing: each scan was fed directly into the network
in its raw form, preserving depth-dependent noise (Astra 2),
patch-fusion drift (Otter), holes, and other artifacts. Apart
from a simple threshold-based filter to remove static back-



Figure 11. Pose estimation results of TrioNet based on FAUST dataset: the red point clouds are captured from the front-view of bodies in
the FAUST dataset, while the blue point clouds are the back-view captures. The meshes following the point clouds are the posed bodies
TrioNet predicted.

Table 7. Data characteristics and key challenges associated with two low-cost scanning devices.

Device Capture protocol Key challenges

Orbbec Astra 2
(structured-light,
fixed setup)
Price: $353

• Single-view depth capture at
∼ 2.5–3 m.

• Increased noise at longer capture distances.
• Artefacts and missing regions (holes) in the

scanned point cloud.
• Insufficient accuracy and completeness of ac-

quired geometry.

CR-Scan OTTER
(hand-held, real-time
registration)
Price: $899

• 1–2 min hand-held scanning at
around 1 m.

• Continuous alignment of sequen-
tial point patches during device
movement.

• Slight subject motion leads to non-rigid mis-
alignment.

• Global fusion may introduce local drift and
visible seam gaps.

• Clothing wrinkles can cause missing data
(holes).

• Varying scanning distances during hand-held
movement result in uneven point-cloud accu-
racy.

ground points, no denoising, registration, or hole filling was
applied. Despite these low-cost scanning conditions and
the absence of professional data refinement, MeasureXpert

is still able to produce reasonably reliable anthropometric
measurements using unprocessed, directly captured data.
Furthermore, as mentioned before, we designed two



Figure 12. Pose estimation results of TrioNet based on 4D-Dress dataset: the red point clouds are captured from the front-view of bodies in
the 4D-Dress dataset, while the blue point clouds are the back-view captures. The meshes following the point clouds are the posed bodies
TrioNet predicted.

Table 8. Measurement errors across devices (unit: cm)

bust underbust hip waist thigh knee calf arm elbow wrist relbow lelbow rwrist lwrist
Astra2 2.15 2.58 4.17 4.14 3.49 0.99 1.76 1.72 1.83 1.06 1.64 2.12 1.28 0.84
Otter 2.58 2.25 3.60 2.20 1.72 0.69 0.96 1.01 1.97 1.17 1.74 2.21 1.45 0.88

Figure 13. The upper eight point clouds were captured with the
Orbbec Astra 2, and the lower eight with the CR-Scan Otter 3D
Scanner. The red rectangles indicate designed postures.

occlusion-specific poses in our newly collected dataset,
where the same region (e.g., forearm or waist) is occluded
in both views. We compared performance under occlu-
sion and no-occlusion conditions. For the waist and sin-
gle wrist, the average errors under occlusion were 4.69cm

and 1.28cm, respectively, while the errors without occlu-
sion were 3.64cm and 1.12cm, respectively.

8.5. Ablation studies

In this section, we will present more experimental evidence
through ablation studies.

8.5.1. Input design

Initially, we discuss whether a single partial point cloud as
input is enough for pose and shape prediction. We use the
architecture of PoseNormNet as our baseline and input a
partial dressed body scan. We refer to the PoseNormNet
configuration with the front partial point cloud as Base-F
and the one with the back partial point cloud as Base-B. We
compare the performance of Base-F, Base-B, and TrioNet
to discuss i) which partial point cloud is more suitable for
pose and shape estimation, and ii) if only one partial point
cloud is enough for shape estimation.



Table 9. Loss function design

TrioNet TrioNet-C TrioNet-D TrioNet-E TrioNet-F
Shape ✓ × ✓ ✓ ✓
Body L2 L2 L2 L2 L2

Landmarks CD CD L2 L2+LNorm CD+LNorm

8.5.2. TrioNet loss functions design
Regarding the decoder architecture, we first discuss the two
input branches. We designed TrioNet-A and TrioNet-B, us-
ing three fully-connected layers to decode F i directly to
S̃i with L2 loss and CD, respectively, to discuss which loss
function is better for posed body point cloud reconstruction.
TrioNet with Single Decoder in two input branches (TSD)
in Section 4.3 is the better one. We chose the better loss
function to design the multi-decoder TrioNet and compared
it with TSD to discuss if a multi-decoder is necessary in
Section 4.3.
We then discuss the loss function of the shape branch. The
loss function should help supervise predicted T-posed body
and landmarks. Here, we do not discuss the choice of body
loss because we want to predict ordered points as vertices
of the SMPL surface, which can maintain the topology of
the SMPL model. Therefore, L2 is the best choice to super-
vise bodies, and no need to discuss. We concentrate solely
on the loss of landmarks prediction. We first discuss CD
or L2 loss, which is the best loss function for landmarks
prediction. In addition, when we focus on landmarks, we
draw inspiration from A-Net, a successful shape prediction
and measurement neural network. A-Net introduced con-
ducted experiments to prove that one-level landmark points
should be constrained on one plane, which is important for
measurement. We take the landmark constrain loss LNorm

(Eq. 36) into consideration, which is similar to A-Net [29]
to constrain landmark points on the same planar:

LNorm =

21∑
i=1

1

|l′i|

|l′i|∑
j=1

|l′i|∑
k=1

|l′ij − l′ik| (36)

Here, l′i is one level of the landmark point set. There are two
different types of l′i: the plane of l′i is parallel to the ground
or vertical. If the plane is parallel to the ground, l′ij and l′ik
represent y−axis values of points. Otherwise, l′ij and l′ik
represent x−axis values of points.
Based on these functions, we define the variants TrioNet-
D through TrioNet-F. Additionally, we reintroduce TNS, as
mentioned in Section 4.3, under the name TrioNet-C to fa-
cilitate a more detailed comparison. The loss functions for
TrioNet, TrioNet-C, TrioNet-D, TrioNet-E, and TrioNet-F
are presented in Table 9.

8.5.3. OR-Net design
In Section 4.3, we demonstrated that OR-Net significantly
improves prediction performance on both T-posed meshes

and measurement values. In this section, we aim to further
investigate the network architecture and its associated loss
functions to achieve more accurate measurement values.
We compare the following designs: i) We split offset learn-
ing and regression into two tasks, where regression di-
rectly operates on the landmarks predicted by TrioNet to
obtain measurement values. We refer to this structure as
Regression-only for value prediction; ii) We adopt the OR-
Net structure but focus on the design of the loss functions.
Since the landmarks predicted by TrioNet are not strictly
constrained to the ground truth measurement-level planes
by the current loss function, and we need to predict values
based on these landmarks, we revisit the conclusion drawn
from A-Net: ensuring that all landmark points at the same
level are constrained to a single plane is critical for accurate
measurements. We design the OR-Net with the loss func-
tion as:

Lop = Lvalue + Llmk + Ltpose + γLNorm (37)

and conduct four experiments with γ = 0, γ = 1/3,
γ = 2/3, and γ = 1, which we denote as 0-Norm
experiment (OR-Net), 1/3-Norm experiment, 2/3-Norm
experiment, and 1-Norm experiment, respectively.

8.5.4. Results and discussions
To evaluate the performance of TrioNet, Base-F, Base-B,
and TrioNet variants A to F, we used the Chamfer distance
(CD), mean squared error (MSE), and mean absolute er-
ror (MAE) to calculate vertex-to-vertex errors between pre-
dicted and ground-truth meshes. The results in 0.1mm unit
are presented in Fig. 14.
We first compare among Base-F Base-B and TrioNet. The
performance of shape prediction is comparable for single
partial inputs; however, for posed body prediction, the front
view outperforms the back view. We attribute this to the fact
that the back view typically experiences greater occlusion,
leading to the loss of hand or forearm posture information.
However, TrioNet, taking both front and back view as input,
significantly improves performance in both pose estimation
and shape estimation. This indicates that one partial point
cloud is insufficient for accurate body estimation, whereas
two partial point clouds provide adequate accuracy for this
task.
When comparing TrioNet-A with TrioNet-B, the L2 loss
shows better performance in estimating the front and
back posed bodies. Furthermore, comparing TrioNet with
TrioNet-B reveals that the multi-decoder architecture out-
performs the single-decoder in posed body estimation. This
improved pose estimation leads to more accurate shape es-
timation. Therefore, for the pose branches, the combination
of a multi-decoder architecture with L2 loss and boundary
constraints proves to be the most effective design.



Figure 14. The figure presents a comparative analysis of different model configurations across three error metrics: Mean Squared Error
(MSE), Mean Absolute Error (MAE), and Chamfer distance(CD) with 0.1mm as their units. Each box plot illustrates the error distribution
for configurations labeled TrioNet, Base-F, Base-B, and A through F, evaluated under T-posed body prediction, front-posed body prediction
and back-posed body prediction conditions.

When focusing on the loss design of shape estimation, we
observed that TrioNet-C performed the worst across all met-
rics, highlighting the necessity and validity of the Lshape

design. Comparing TrioNet-D and TrioNet-E, we found
that using L2 loss to learn landmarks, combined with nor-
malization constraints, significantly improved the overall
prediction accuracy. Under the constraint of normalization,
the performance difference between using L2 and CD as
loss functions was minimal. Interestingly, when CD was
used alone for landmark learning without normalization
constraints, the results for both pose estimation and shape
estimation were better. We think that LNorm distracts from
learning shape and pose. Therefore, we designed TrioNet
with shape loss, L2 loss as body loss, and CD as landmark
loss without LNorm.

Table 10 presents the means and standard deviations (in
centimeters) for 21 different measurement values across the
0-Norm, 1/3-Norm, 2/3-Norm, 1-Norm, and Regression-
only experiments. Overall, the 0-Norm experiment (OR-
Net) demonstrates the best performance among all designs,
suggesting that whether the landmarks are strictly con-
strained to a single plane has little impact on the regression
outcomes. When the landmarks are not rigidly confined to

a single plane, and instead the focus is shifted toward opti-
mizing both values and point positions, the results are com-
paratively better. Furthermore, a comparison between OR-
Net and Regression-only indicates that splitting optimiza-
tion and regression into two separate tasks is unnecessary.
Therefore, OR-Net is the best design for our task.



Measurement 0-Norm 1/3-Norm 2/3-Norm 1-Norm Regression-only
Levels Mean STD Mean STD Mean STD Mean STD Mean STD
bust 1.41 1.14 1.45 1.14 1.41 1.16 1.43 1.14 1.41 1.14

under bust 1.50 1.24 1.57 1.31 1.53 1.28 1.53 1.27 1.50 1.24
hip 1.23 1.05 1.24 1.13 1.28 1.10 1.26 1.11 1.23 1.09

waist1 1.79 1.55 1.86 1.67 1.83 1.59 1.79 1.62 1.83 1.58
waist2 1.83 1.56 1.89 1.68 1.87 1.63 1.84 1.64 1.84 1.59
waist3 1.87 1.61 1.94 1.68 1.90 1.66 1.91 1.66 1.89 1.62
waist4 1.88 1.64 1.96 1.69 1.89 1.67 1.91 1.65 1.89 1.63
waist5 1.82 1.57 1.89 1.64 1.84 1.60 1.87 1.62 1.84 1.56
waist6 1.73 1.47 1.82 1.51 1.74 1.49 1.75 1.50 1.73 1.45

right middle thigh 0.95 0.85 0.98 0.88 0.99 0.86 1.00 0.89 0.97 0.86
left middle thigh 0.97 0.87 1.00 0.90 1.00 0.89 1.03 0.91 1.00 0.88

right knee 0.41 0.34 0.41 0.35 0.40 0.37 0.43 0.36 0.41 0.36
left knee 0.39 0.33 0.40 0.35 0.38 0.35 0.42 0.35 0.39 0.35
right calf 0.47 0.42 0.47 0.43 0.48 0.43 0.52 0.44 0.47 0.42
left calf 0.51 0.46 0.52 0.47 0.53 0.48 0.53 0.49 0.52 0.46

right upper arm 0.62 0.51 0.63 0.54 0.64 0.53 0.63 0.52 0.63 0.51
left upper arm 0.68 0.56 0.71 0.61 0.70 0.56 0.70 0.58 0.70 0.57

right elbow 0.33 0.30 0.33 0.29 0.33 0.28 0.33 0.28 0.33 0.28
left elbow 0.32 0.29 0.33 0.31 0.33 0.30 0.33 0.29 0.33 0.28
right wrist 0.21 0.17 0.22 0.18 0.21 0.17 0.22 0.17 0.21 0.17
left wrist 0.17 0.15 0.17 0.14 0.17 0.14 0.17 0.14 0.17 0.14

Table 10. Comparison of measurements across different OR-Net designs (Unit: cm).
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