MeasureXpert: Automatic Anthropometric Measurement Extraction from Two
Unregistered, Partial, Posed, and Dressed Body Scans

Supplementary Material

6. Detailed Architecture

In the MeasureXpert pipeline (Figure [I), we employ four
encoder blocks (within light grey rectangles), two multi-
decoder blocks (within yellow rectangles), and five decoder
blocks (consisting of three green rectangular slabs. Each
green rectangular slab represents a fully connected layer).
All encoder blocks share a common structure, as do the sub-
decoders within the multi-decoders and the other decoders.
We begin by introducing the encoder and decoder struc-
tures, followed by a step-by-step formulation of the over-
all architecture. Then, we establish the body segmentation
and introduce the corresponding notations to help under-
stand multi-decoder blocks. Lastly, we provide a detailed
formulation of the loss functions.

6.1. Encoder

The encoder process begins with a specific point set
passing through an MLP consisting of two layers with
128 and 256 neurons, denoted as M LPXS. Following
this MLP, a max pooling operation is applied to obtain a
global feature vector of the input point set. To enrich the
feature representation, this vector is concatenated with the
pre-pooling output from the MLP. And the concatenated
features are processed by a second MLP with layers
of 512 and 1024 neurons, denoted as M LP3*. A final
max pooling operation solidifies the ultimate global feature.

6.2. Decoder

The decoder consists of three fully connected layers. The
first two layers consist of 1024 neurons, denoted as F'C{%%4
and FC}9%4, respectively, while the third layer has neurons
depending on what we want to output. If we want to obtain
a point set, the number of neurons is equal to three times the
number of points IV (to account for the x, y, and z coordi-
nates), denoted as I’ C’g xN , while if we want to output val-
ues, the number of neurons is the number of values, denoted
as FC;‘gvalues‘. Additionally, if the last layer is FC;’XN, a
reshape operation is executed to output the 3D coordinates
of the expected point set.

6.3. TrioNet

Encoder. TrioNet proceeds from two partial point clouds
ST and 8P of one individual from front- and back-view, re-
spectively. The shared encoder function £ with correspond-
ing weights (Eq. [2) follows the following steps:

MLPES(SY) = Qi,i € {f,b} (10)

Mazpool () = Qi € {f,b} (11)

Mazpool(MLP: 3 ([0, QY)) = F',i € {f,b} (12)

extracting the global features F/ and F?, where (2} repre-
sents the local features, Q¢ denotes the global feature, and
F is the final feature of the input point cloud.

Input branches. Each sub-decoder D’ via corresponding
weights to decode the global feature to the corresponding
posed body point cloud following:

D' (Fiwl) = FCF N (FC3** (FCL°**(F"))).reshape(—1,3)
=S, i€ {f.b}

(13)

where x € {T,H,RA, LA, RL, LL} represents the spe-
cific segment of body S’ (refer to Section , while w!
is the weights for S¢ decoder and N, = |Si|. All six
segments form the comlpete posed body point cloud S,
ie{f, b}
Shape branch. The shape branch initiates with USV ex-
traction (Algorithm [I) to extract F,. In this process, the
shared regression step utilizes a decoder block with corre-
sponding weights following:

Regression(F') = FC3"(FC3***(FC12*(F))) = &,
(14)

Regression(F’) = FC5?(FC3** (FCL** (F))) = &".
1s)
to obtain the two PIVs &/ and .
The extracted USV F;, extracted via Algorithm [1} is fed
into a decoder block to learn the function Eq. 3| mentioned
in Section 3.1t

D(Fs) = FC ' FCY Y (FOL (Fy))).reshape(—1,3)
=[To, Lmk.)" == TL..

(16)

Therefore, the reshaped output has 10364 points, in which

the first 6890 points are T-posed body mesh vertices 7,

and the last 3456 points constitute 21 groups of landmarks
Lmk, (refer to Section|[7)).

6.4. OR-Net

The offset prediction takes 7L, as input and outputs the
offsets to be added to T L., yielding refined coordinates 7 L
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Figure 6. Examples of body segmentation and corresponding no-
tations.

for the vertices 7 and landmarks £Lmk of the T-posed mesh
following:

MLP5E(TLe) = Qrey, (17
Mazpool(Qrr,) = Qre, (18)

Mazpool(MLP: 3 (7L, ,QrL])) = Fre, (19)

TL =TLAFC O PO (FCL°** (Frr))).reshape(—1,3)

(20)

where Qr,, represents the local features, {71, denotes the
global feature, and Fry, is the final feature of 7 L..
The refined landmarks, denoted as Lmk = {I;}?L,, consist
of 21 groups of points that are then fed into the subsequent
encoder-decoder regression module to output measurement
values following:

MLPES (1) = Qu,1, 2D

Mazpool (Qu;1) = u,, (22)

Mazpool(MLP3s* ([Qu,1,%,])) = Fi,. (23)
Regression(F,) = FC3(FCy**(FC1*(F.,))) = Vi,

(24)
where ¢ € {1,2,...,21}, Q1 represents the local features,
€, denotes the global feature, and 77, is the final feature of
l;.

6.5. Body segmentation

As Figure [6] shows, a T-posed SMLP mesh can be
manually segmented into six different segments P =
{T,H,LA, RA,LL, RL}, where T is the torse, H is the
head, LA is the left arm with hand, RA is the right arm
with hand, LL is the left leg with foot, and RL is the
right leg with foot. Considering all SMLP meshes have
the same topology, based on the previous manual segmen-
tation, an arbitrary SMLP body can be segmented auto-
matically. Taking the ground-truth posed body point sets

oo = 185,ld = 1,2,...,]\7;t},i € {f,b}, as example,
after segmentation, we classified g;t into: the torse point
set Sqt , the head point set S¢, , the left arm with hand
point set Si

gtu>

the right arm with hand point set ggt A

and the right leg with

glra’

the left leg with foot point set g;

trLr’
foot point set S;t. .- The point 57, . in each segment S},
can be classified into two types: common points and bound-

ary points. Common points are exclusive to S;t , while

boundary points are shared by ggtw and géty , where x # .

We use B_f]tm to represent the set of boundary point pairs
(0%, ;s 0Ly ;). where Bl = S e N SgtT, z€P \ {1},
and BZ € B, { gtH ﬁ S;tT,S;tRA N S;th;tLA
;tT’ i S’tT, gtrr 1 SgtT} Each pair includes two
points: the first point, bzt _j» is a boundary point of one spe-

cific body part excluding the torso, and the second point,

b;tT’ ;- 1s a corresponding boundary point on the torso.

6.6. Loss functions

We give the formulations of the loss functions mentioned in

Section

TrioNet. For two input branches, they share the same loss
functions: local loss (Eq. [23), global loss (Eq. [26), and
inter-connective loss (Eq. 27).

Z > l8s, = Sl @5)

S|

x€P S;J Gsé
7 1 ~1 ~1 2
Eglobal mln HS] - sgtj H
|S | cgi gt €Sy
L (26)
. ~i ~% (12
1 min (54, — 52,
|Sgel sieg €S
gtj gt
Lhountary = > e 3 lIbh, — Bl @D
boundary — |BZ| T ; T; )

z€P\{T} Gy ,b‘Tj)eB}v

where P = {T', H,LA, RA, LL, RL} is the body segments
set, §i € Sl represents the predicted body segment point

correspondlng to the ground-truth point S, . € Slt , S
denotes the set of all predicted body points, and (b;j b j)

B is the boundary point pair corresponding to the ground-
truth pair (b%, ,b, ) € Bi, . Additionally, i € {f,b}
indicates whether the target of supervision for the loss is the
front (f) or the back (b) of the body.

For the shape branch, we formulate £

lowing:

C
tpose and L7, as fol-

1 [Tel

Lipose = 7] D i = g, I, (28)
=1
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min [lz—yl|*+
Iel{ilelgti

|lq1t,| > min |ly—a|)*
s YElge; K

(29)
where vy, € Ty is a vertex in the ground-truth T-posed
body mesh corresponding to the predicted vertex v, € 7,
while [y, € Lmky is the ground-truth point set corre-
sponding to the predicted point set of one level landmarks
Il € Lmk,.
OR-Net. The loss functions to supervise mesh L¢,,5. and
landmarks L;,,, optimization are similar to previous pre-

. . . . .
diction loss functions Lf,,,,. and Ly, ., respectively.

. B 1 I7T] ,
tpose = TA4=T Z Hvz — Vgt; || ’ (30)
Tl =

| > min fly—a|l”
YE€lgt;

(€2

where v; € T is a refined vertex of the predicted T-posed

mesh, while I; € Lmk is a refined point set of one level

predicted landmarks. Beside Lyp0sc and L;;,,;, OR-Net has
another L1 loss to supervise value predictions defined as:

21
1 . 2 1
Em = —_— —
e = 2 g 2 i eyl

21
Loatue = Y [IVi = Var,l, (32)
i=1

where V;, € Vg, represents the ground-truth measurement
value corresponding to V; € V.

7. Datasets

In this section, we first present the detailed synthesizing
process of the BWM dataset, utilized for training, valida-
tion, and testing. Then we outline the extension process
applied to two open-access real-world datasets, FAUST [6]
and 4D-Dress [59]].

7.1. BWM dataset

Following Figure [2] the synthesizing process of the BWM
has four steps: i) unclothed bodies generation, ii) dressing
the posed unclothed bodies, iii) rendering the dressed
bodies, and iv) measurement annotation.

Unclothed bodies. We initiate our process by utilizing
the SMPL model to generate synthetic unclothed human
body meshes. We utilize the extensive pose and shape
parameters provided by the SURREAL dataset [S7] in our
generation process. By randomly combining these pose and
shape parameters, we create tuples of human bodies, each
consisting of three meshes: two with randomly arbitrary

poses S;t and Sgt, and one in a canonical "T” pose 7.

Notably, all bodies within a tuple share identical shape
parameters but differ in pose parameters.

Dressing. To simulate clothed human bodies, we adopt the
method proposed in the BUG dataset [20]. We apply the
same clothing mesh to the two posed bodies within each
tuple, effectively generating clothed body models while
maintaining consistent underlying body shapes.
Rendering partial point clouds. Subsequently, we use
BlenSor [18] to simulate the scanning process, rendering
partial point clouds S/ and S° from the front and back
views of the clothed, posed bodies, respectively. We
employ a single-camera scanner that incorporates inherent
noise perturbations typical of real-world depth images.

Ground-truth measurement annotation. In accordance
with the ISO 8559 standard [25], we establish 16 mea-
surement levels on the bodies in the canonical pose (see
Figure . These levels include the bust, underbust, waist,
hip, middle thighs, knees, calves, upper arms, elbows,
and wrists. For fashion design, the measurement should
also consider the preferred waist level [49], which means
the level a person would prefer to wear the waist of his
or her pants. Additionally, we further define five more
measurement levels in the abdominal region as Figure
shows, centrally located on the torso, to accommodate these
discrepancies. Therefore, we establish 21 measurement
levels in total.

We employ plane at each measurement level to segment
the unclothed body in the canonical pose to obtain the
measurement landmarks Lk, = {lg, }21,. To facilitate
training, we manually assigned a fixed number of land-
marks of each level through random sampling based on the
variation in girth. Specifically, 256 landmark points are
allocated for the bust, underbust, hip, and six waist levels;
128 landmark points are assigned to the legs, including
two mid-thigh, two knee, and two calf levels; and 64
landmark points are designated for the arms, covering two
upper arm, two elbow, and two wrist levels, resulting in
a total of 3456 landmark points. We then extract precise
anthropometric measurements V,; = {V,, }7L, via the
function Convex Hull in OpenCV [8] working on the
corresponding landmark point set {l4¢, }21;.

In summary, each sample in the BWM includes three
unclothed body models: two in different postures and one
in a canonical posture, accompanied by two clothed body
mesh with scans (front and back views) corresponding to
the posed unclothed bodies and measurement landmarks
with ground-truth values. In addition to estimating body
shape under clothing, the proposed dataset is also suitable
for investigating other research problems such as non-rigid
point cloud registration and point cloud completion. In this
study, we generated 150K male and 150K female data
groups. We split the dataset into 99% for training, 0.3% for
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Figure 7. Examples of data we used in our experiments from BWM, extended FAUST and 4D-Dress.
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Figure 8. Measurement definitions from ISO8559 [23]]. Besides
the first four definitions on the torse, the other six definitions are
defined on both the right and left sides.

testing, and 0.7% for validation.

7.2. Real-world datasets extension

4D-Dress. The 4D-Dress dataset consists of high-
resolution 4D scans of clothed humans captured over
time, providing dynamic image and mesh sequences that
represent body movements and clothing deformations. In
addition to the dressed body meshes, the dataset includes
underlying SMPL body models with associated pose and
shape parameters. However, unlike the BWM dataset,
4D-Dress does not provide body models in a canonical
posture, partial dressed body scans, or anthropometric
measurements. To obtain the underlying body model in a
canonical T-pose, all pose parameters can simply be set
to zero within the SMPL model. For the scanning and
measurement, we adopt the RealPartialScan [22]] method to
extract the front and back views from the dressed meshes
and OpenCV to calculate the corresponding anthropometric

values.

FAUST. The FAUST dataset [6] contains high-resolution
3D scans of 10 unclothed human bodies in various poses,
along with their corresponding fitted SMPL models.
However, FAUST does not provide the SMPL parameters
(shape and pose), preventing direct acquisition of T-posed
mesh for each subject by simply setting the pose parameters
to zero. To overcome this, we employ PoseNormNet to
perform posture normalization on the posed SMPL models
for each subject, bringing them into a canonical posture
(’T” pose). Once normalized, we apply the Iterative Closest
Point (ICP) to align all the normalized models for the same
subject. We then compute the average coordinates for each
vertex across all the normalized models to obtain a "mean”
model, which serves as the canonical T-posed mesh for
the subject. For anthropometric measurements, we follow
the approach used in the BWM dataset, measuring each
normalized model at predefined levels. The mean values
across all models at each measurement level are taken as
the subject’s anthropometric values. For the partial scans,
we also use the RealPartialScan [22] method to extract
the front and back views from the real-world meshes and
export the resulting point clouds.

8. Experiments

This section of supplementary materials is organized into
three parts: (i) additional content for comparative experi-
ments, (ii) demonstration of the by-products generated by
this method, and (iii) extended ablation studies and re-
sults, providing a more comprehensive verification of the
method’s scientific validity and effectiveness.



Measurement errors On FAUST(unclothing) Across Image-based Methods

¥ T* !’

g ﬁé ﬁ@%@%#§§#+%%mmma

Measurement errors On 4D-Dress(same clothing) Across Image-based Methods

Methods
ours
POCO
PYMAF
PyMAF-X
BEDLAM
NLF

25

iy

20

=1

15 4

Value
]

10 4

=3

w
L

o
L

Methods
ours
POCO
PyMAF
PyMAF-X
BEDLAM
NLF

204

o

15

iy

Value

10 4

5}

v
L

=)
!

Measurement errors On 4D-Dress(different clothing) Across Image-based Methods

Methods

201 ours

POCO
PYMAF
PyMAF-X
BEDLAM
NLF

15 |

iF] gy

—

10 -

Value

v
L

J éééféééﬁﬁﬁﬁa &ﬁ@@

1T TP Y IO

gust deVB“‘S{ \-\up M\s{\- m\g{l walsﬂ' \Na.gt'* ‘Na\gtﬁ Wa\gxﬁ N“\‘dd\e \_\'ﬁ‘dﬂ\e “ee “ee a\‘ \_;_a\f “uppe\' \»P"Er ve\b"w \‘e\huw ansi “\anl

Measurement

Figure 9. These figures present box plots of absolute errors (in cm) for body measurements on the FAUST and 4D-Dress datasets across
different image-based methods: POCO [13]], NLF [53], PyMAF-X [63], BEDLAM [3]] PyMAF [64]], and ours.

8.1. Evaluation Metrics ues. For ablation studies, in addition to Chamfer Distance,
] . ) we incorporate Mean Squared Error (MSE) and Mean Ab-
As supplementary materials for Section [d} we continue to solute Error (MAE) to provide a more comprehensive and

use absolute errors to evaluate the error of the measured val-



Measurement Ours BEDLAM |[5] NLF [53] POCO [15] | PyMAF [64] | PyMAF-X [65]
Unit (CM) Mean Std | Mean Std Mean Std | Mean Std | Mean Std | Mean Std
bust 325 1.62 | 1333 5.68 7.3 442 | 902 732 | 293 523 7.1 3.58
hip 238 1.24 | 10.52 5.78 193 245 | 434 374 | 478 238 | 7.14 2.75

left calf .12 0.52 | 3.74 1.45 058 071 | 1.54 085 | 1.67 0.7 2.52 1
left elbow 1 0.43 | 2.66 1.32 1.05 0.76 | 1.36 1.3 097 0.85 | 1.89 1.17
left knee 0.68 0.46 2.7 1.45 059 076 | 1.17 1.05| 1.31 0.64 | 1.88 0.74
left middle thigh 1.79 092 | 5.88 345 1.16 136 | 3.19 1.78 3 1.36 | 3.58 1.02
left upper arm 1.06 0.64 | 6.48 2.94 1.23 153 254 258 | 198 1.61 3.8 1.76
left wrist 0.58 0.21 | 1.01 0.46 0.54 044 | 0.69 0.62 0.5 0.37 | 0.74 0.49
right calf 1.15 048 | 3.23 1.38 056 074 | 145 085 | 147 0.68 | 2.14 0.8
right elbow 0.73 038 | 3.46 1.52 086 095 | 147 155 1.17 096 | 2.21 1.11
right knee 072 045 | 3.01 1.38 059 081 | 1.19 099 | 128 0.63 | 2.11 0.85
right middle thigh | 1.77 0.88 | 6.43 3.38 1.15 1.4 322 174 | 305 136 | 3.82 1.24
right upper arm 1.2 059 | 629 297 141 157 25 278 | 1.83 1.68 | 3.65 1.66
right wrist 0.65 0.23 | 1.07 0.34 073 042 | 077 062 | 054 035 | 0.82 0.45
under bust 2.95 1.5 | 15.93 4.3 6.06 4.5 8.18 7.5 321 492 | 10.81 4.12
waist1 1.99 14 | 21.06 5.99 323 443 | 509 6.63 | 571 3.83 | 16.82 4.9
waist2 23 144 | 21.51 5.71 341 458 | 5.67 7.4 542 438 | 17.63 5.24
waist3 2.09 147 | 2215 5092 385 509 | 634 833 | 509 492 | 17.73 5.17
waist4 217 142 | 21.8 5.97 4.46 5.3 6.67 8.5 459 5.03 | 16.82 5.04
waist5 2.33 14 | 20.06 5.64 5.02 508 | 692 831 | 401 5.02 | 15.01 4.84
waist6 249 143 | 1847 543 536 473 | 7.09 8.03 | 3.57 497 | 13.38 4.78
Table 1. Comparison of measurement errors across different image-based methods on FAUST.

Measurement Ours BEDLAM |[5] NLF [53] POCO [15] | PyMAF [64] | PyMAF-X [65]
Unit (CM) Mean Std | Mean Std Mean Std | Mean Std | Mean Std | Mean Std
bust 1.55  0.76 | 12.32  8.49 547 323 | 418 1.89 | 3.29 2.3 11.1 6.52
hip 1.04 0.58 9 6.53 6.1 321 | 563 332 | 489 324 7.9 6.84
left calf 035 031 | 2.64 1.78 191 097 | 1.66 093 | 141 0.88 | 2.26 1.81
left elbow 0.28 0.22 | 244 1.81 1.45 0.9 1.16 076 | 096 0.65 | 2.23 1.73
left knee 0.45 0.3 2.69 1.93 213 1.06 | 1.84 1.09 | 1.56 1.06 | 2.32 1.96
left middle thigh 0.82 045 5.3 3.42 333 143 | 305 148 | 275 152 | 4.63 2.71
left upper arm 0.81 0.38 | 4.37 3.29 1.95 1.09 1.8 076 | 146 093 | 3.56 2.7
left wrist 0.28 0.18 | 1.17 0.84 0.81 052 ] 055 044 | 045 029 | 1.18 0.89
right calf 032 0.27 | 2.57 1.79 1.85 098 | 1.59 099 | 134 0.89 | 2.29 1.82
right elbow 0.29 0.27 | 2.76 2.04 1.54 096 | 124 079 | 1.06 0.71 | 2.51 1.86
right knee 0.41 0.3 2.69 1.95 198 1.11 | 1.82 1.02 1.5 1.01 | 2.32 1.94
right middle thigh | 0.82 047 | 5.22 3.5 3.16 1.44 3 135 | 272 144 | 4.35 2.78
right upper arm 072 035 | 445 334 1.89  1.07 1.7 073 | 1.39 09 | 3.61 2.66
right wrist 035 0.15 | 1.19 0.74 077 049 | 053 038)] 049 024 | 1.23 0.69
under bust 1.13  0.66 | 11.53 694 444 228 | 334 107 | 254 1.73 | 10.52 4.27
waist1 0.67 0.56 | 12.31 7.53 6.01 324 | 587 219 | 461 259 | 12.32 5.33
waist2 0.8 0.55 | 12.68 7.42 6.17 3.3 585 208 | 448 252 | 12.87 5.06
waist3 0.97 055 | 13.74 794 624 335 | 565 191 | 433 253 | 13.69 5.06
waist4 0.92 0.56 | 14.07 8.07 5.9 316 | 5.14 1.68 | 396 247 | 13.69 4.87
waistS 0.88 0.63 | 13.57 7.76 5.5 2.93 4.6 1.57 | 3.52 232 13 4.68
waist6 0.9 0.69 | 12.97 7.44 522 276 | 422 153 | 322 219 | 12.22 4.62

Table 2. Comparison of measurement errors across different image-based methods on 4D-Dress (same clothing).




Measurement Ours BEDLAM [5] NLF [53] POCO [15] | PyMAF [64] | PyMAF-X [65]
Unit (CM) Mean Std | Mean Std | Mean Std | Mean Std | Mean Std | Mean Std
bust 1.38  0.71 | 12.11 3.84 6.7 421 | 417 217 | 3.65 2251252 6.21
hip 1.77  0.79 | 8.09 3.7 7.03 323 | 512 333 | 603 4.02 9 6.29
left calf 069 032 227 097 | 215 092 | 143 092 | 1.68 1.08 | 2.45 1.68
left elbow 0.7 026 | 235 091 1.7 096 | 1.13 0.78 | 1.18 0.69 | 2.53 1.6
left knee 091 029 | 2.36 1.09 | 2.37 1 1.71  1.08 | 1.97 133 | 2.52 1.8
left middle thigh | 0.76  0.46 | 4.31 202 | 381 157 | 266 141 | 328 207 | 49 2.49
left upper arm 049 034 | 4.05 1.57 | 241 144 | 1.62 078 | 1.67 1.05 | 4.06 2.51
left wrist 069 024 | 117 042 | 096 051 | 065 035 057 0.22 | 1.33 0.83
right calf 087 04 | 223 1 2.11 095 1.4 095 | 163 1.05| 249 1.69
right elbow 0.63 0.26 | 2.65 1.01 1.87 105 1.18 082 | 13 075 | 2.84 1.73
right knee 0.8 0.25 | 2.38 1.04 | 225 1.06 | 1.67 1.01 1.9 1.25 | 2.56 1.74
right middle thigh | 0.57 044 | 425 2.02 | 3.65 157 | 257 129 | 3.23 2 4.63 2.56
right upper arm 039 03 | 4.14 1.58 | 236 145 | 154 074 | 1.57 1 4.12 2.48
right wrist 0.66 0.18 | 1.18 0.32 | 0.89 0.51 0.6 034] 06 017 | 1.34 0.64
under bust 0.7 059 | 11.07 27 54 332 3.09 139 | 2.68 1.6 | 11.65 4.09
waist1 .73  0.67 | 11.7 293 | 7.04 4.09 | 541 3.02| 529 2.8 | 1328 4.75
waist2 2 0.76 | 12.06 2.8 717 421 545 292 | 504 259 | 13.83 451
waist3 1.93 0.74 | 13.05 3.03 | 7.33 439 | 525 271 | 475 2441|1479 459
waist4 14 062 | 1332 309 | 705 43 | 477 243 | 441 234 | 1483 445
waist5 1.04 0.61 | 1286 297 | 6.63 4.08 | 428 225| 399 22 | 14.14 433
waisto 093 0.62 | 12.28 2.85 63 388 | 395 212 | 368 2.09 | 1336 4.33

Table 3. Comparison of measurement errors across different image-based methods on 4D-Dress (unseen styles).

Measurement Ours 3DBodyNet [21] | ArtEq [16] IP-Net [3] IP-Net (Partial) [3]
Unit (CM) Mean Std | Mean Std Mean Std | Mean Std | Mean Std
bust 325 1.62 | 4.76 2.02 3.08 3.71 4.2 375 | 342 2.84
hip 238 1.24 | 4.69 2.4 232 3.78 3.8 3.33 | 6.36 3.14
left calf 1.12 052 | 1.77 0.87 1.02 1.32 1.6 1.55 | 2.82 1.33
left elbow 1 043 | 1.02 0.52 1.15 082 | 125 1.25 1.6 0.92
left knee 0.68 046 | 1.73 0.93 1.01 097 | 1.64 1.5 2.44 1.06
left middle thigh 1.79  0.92 | 2.88 1.38 1.72 248 | 2.77 2.2 491 2.27
left upper arm 1.06 0.64 | 2.24 1.16 1.88  2.19 2.3 2.29 | 3.53 1.75
left wrist 0.58 0.21 | 0.47 0.32 0.7 028 | 1.23 0.71 1.42 0.55
right calf 1.15 0.48 | 1.38 0.74 1.04 1.18 | 145 1.43 2.6 1.23
right elbow 073 038 | 1.27 0.7 1.01 1.19 | 147 153 | 2.03 1.09
right knee 0.72 045 | 1.65 0.83 1.02 098 | 1.57 145 | 236 1.06
right middle thigh | 1.77  0.88 2.9 1.34 1.86 243 | 277 226 | 5.09 2.37
right upper arm 1.2 0.59 | 1.93 1.07 1.63 215 | 219 212 3.1 1.57
right wrist 0.65 023 | 049 0.36 0.75 0.3 0.68 0.57 | 0.63 0.38
under bust 2.95 1.5 4.67 2.19 3.07 345 3.6 3.86 | 3.98 3.05
waist1 1.99 1.4 6.42 3.76 5.22 4.5 6.11 487 | 7.76 4.89
waist2 2.3 1.44 6.1 3.78 53 435 | 6.06 4.78 | 7.38 4.9
waist3 209 147 | 6.01 3.75 543  4.38 6.1 471 7.1 4.96
waist4 217 142 | 5.55 3.58 514 433 | 571 464 | 635 4.77
waist5 2.33 14 4.92 3.04 442 408 | 4.68 436 | 5.09 4.03
waisto 249 143 | 4.52 2.59 3.86 3.96 4 3.9 4.17 3.24

Table 4. Comparison of measurement errors across different point cloud-based methods on FAUST.
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Figure 10. These figures present box plots of absolute errors (in cm) for body measurements on the FAUST and 4D-Dress datasets across
different point cloud-based methods: 3DBodyNet [21], ArtEq [16]], IP-Net (partial) and IP-Net [3], BodyPointNet [20], and ours.

detailed assessment. fined as follows:
The three metrics CD, MSE, and MAE, which we used to CD(pred, gt) = 1 Z min o — Hg
evaluate the performance of body shape estimation, are de- pree, g |pred| pred| ~ VEgt 4

|gt| Z TEP red”m_y”

(33)



Measurement Ours BodyPointNet [20] | 3DBodyNet [21] | ArtEq [16] IP-Net [3] IP-Net (Partial) [3]
Unit (CM) Mean Std | Mean Std Mean Std Mean Std | Mean Std | Mean Std
bust 1.55 0.76 5.3 1.77 8.78 6.89 10.17 4.09 | 442 508 | 7.34 5.99
hip 1.04 0.58 | 2.93 1.3 7.51 5.12 5.67 1.65| 3.83 392 5.8 4.33
left calf 035 031 | 1.19 0.43 2.82 1.94 221 055 228 1.66 2.8 1.89
left elbow 0.28 0.22 | 091 0.25 2.02 1.23 1.85 047 1.6 1.2 2.2 1.41
left knee 045 03 | 092 0.41 2.6 1.47 2.02 0.1 1.7 1.27 | 243 1.6
left middle thigh 0.82 045 | 2.31 0.97 4.34 2.69 277 1.02 | 276 197 | 4.03 2.49
left upper arm 0.81 0.38 | 1.58 0.58 3.16 2.46 258 125 233 204 | 354 2.25
left wrist 0.28 0.18 | 0.41 0.19 1.06 0.52 1.08 0.17 1.5 0.66 | 1.72 0.73
right calf 032 027 | 1.13 04 2.6 1.66 2 045 | 2.19 1.59 | 2.65 1.82
right elbow 0.29 0.27 | 0.89 0.29 2.28 1.44 206 057 | 1.84 139 | 243 1.58
right knee 0.41 0.3 | 0.89 0.45 2.56 1.52 207 048 | 1.77 135 | 246 1.68
right middle thigh | 0.82 047 | 2.33 0.96 4.44 2.89 2.9 1.03 | 2.88 2.14 | 422 2.57
right upper arm 0.72 035 | 1.66 0.61 3.15 2.5 268 125 ] 23 207 | 345 223
right wrist 035 0.15 | 0.65 0.21 1.22 0.69 1.3 0.3 121 0.84 | 1.29 0.87
under bust 1.13 0.66 | 3.98 1.54 8.37 7.45 9.37 517 | 445 481 | 584 5.79
waistl 0.67 0.56 3.2 1.56 9.95 7.83 891 504 | 527 636 | 7.62 7.07
waist2 0.8 0.55 | 3.25 1.62 10.08 7.96 9.61 496 | 532 656 | 797 7.29
waist3 097 0.55 | 3.19 1.73 10.17 8.07 10.26 5.01 | 541 6.8 8.39 7.55
waist4 092 0.56 | 3.21 1.77 10.08 8.02 10.19 54 541 6.83 | 8.54 7.68
waistS 0.88 0.63 | 3.28 1.8 9.65 7.7 991 548 5.1 6.43 | 8.15 7.47
waist6 0.9 0.69 | 3.55 1.75 9.22 7.38 9.75 535 | 456 568 | 7.25 6.89

Table 5. Comparison of measurement errors across different point cloud-based methods on 4D-Dress (same clothing).

Measurement Ours BodyPointNet [20] | 3DBodyNet [21] | ArtEq [16] IP-Net [3] IP-Net (Partial) [3]
Unit (CM) Mean Std | Mean Std Mean Std Mean Std | Mean Std | Mean Std
bust 1.38  0.71 | 6.38 5.76 13.75 2.76 11.71 213 | 647 49 8.05 5.36
hip 1.77  0.79 | 7.07 5.55 13.71 2.3 755 1.88 | 447 325 | 743 4.35
left calf 0.69 032 | 232 2.03 4.8 1.09 265 051 | 445 238 | 3.93 2.13
left elbow 07 026 1.74 141 3.48 0.59 229 039 | 292 147 | 2.89 1.43
left knee 091 0.29 | 248 2.04 4.48 0.76 263 073 | 351 204 ]| 349 1.9
left middle thigh | 0.76  0.46 | 4.89 3.12 8.17 1.57 4.02 134 | 438 274 | 547 3.02
left upper arm 049 034 | 296 1.56 5.96 0.98 333 075 | 396 2.09 | 4.25 2.3
left wrist 0.69 024 | 0.8 0.89 1.7 0.32 127 022 22 071 214 0.7
right calf 0.87 04 | 233 2.05 4.59 091 246 054 | 438 234 | 3.89 2.17
right elbow 0.63 0.26 | 1.95 1.32 3.97 0.63 254 042 | 325 159 | 3.23 1.62
right knee 0.8 0.25 2.4 2.08 4.49 0.7 261 057 | 361 191 3.58 1.93
right middle 0.57 044 | 4.74 3.16 8.29 1.6 409 1.14 | 452 272 | 562 3.06
right upper 039 0.3 | 4.66 9.11 5.93 1.02 342 073 | 379 206 | 4.14 2.3
right wrist 0.66 0.18 | 0.88 0.95 1.82 0.27 141 021 | 191 0.74 | 1.81 0.83
under bust 0.7 059 | 581 5.02 12.59 2.92 1036 324 | 539 4.03 | 5.83 4.38
waist1 1.73  0.67 | 4.7 5.28 15.54 2.84 10.59 287 | 6.63 5.15 | 8.26 5.45
waist2 2 0.76 | 5.29 4.93 15.44 2.89 1127 284 | 737 525 8.8 5.66
waist3 1.93 0.74 | 5.74 4.78 15.7 2.84 1198 283 | 7.86 543 | 9.19 5.98
waist4 14 0.62 | 552 4.78 15.46 2.77 11.86 3.09 | 795 5.67 | 9.19 6.13
waist5 1.04 0.61 | 5.49 4.7 14.64 2.65 1141 32 | 755 563 | 873 6.03
waist6 093 0.62 | 548 4.74 13.97 2.56 11.11 315 | 659 515 | 7.68 5.61

Table 6. Comparison of measurement errors across different point cloud-based methods on 4D-Dress (unseen styles).

1
MSE(pred, gt) = pred] Z (x—y)° (34 MAE(pred, gt) =
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where (pred, gt) € {(T, Tyt), (87, 81,), (S, St}

8.2. Comparisons with different methods on real-
world datasets

Due to space limitations, the main text presents compar-

isons only with the latest (2023/2024) methods and the most

relevant approach, 3DBodyNet, which remains the most re-
cent method using partial front- and back-view scans for
body shape estimation, making it particularly relevant to
our study. However, for a more comprehensive evaluation,
our actual experiments include comparisons with relevant
works from the past five years.

In the supplementary materials, we expand the compari-
son by categorizing methods into:

e Comparison with image-based methods: POCO
(2024)[15], NLF (2024) [53]], PyMAF-X (2023) [65],
BEDLAM (2023) [3] and PyMAF (2021) [64];

e Comparison with point cloud-based methods: ArtEq
(2023) [16], 3DBodyNet (2021) [21], IP-Net (partial)
(2020) taking partial point cloud as input and IP-Net
(2020) taking complete point cloud as input [3], and Body
PointNet (2020) [20]].

We first outline a method for conducting fairer comparisons
across different approaches, accounting for variations in in-
put data. As MeasureXpert utilizes two inputs containing
body information from both front and back views, addi-
tional adjustments are necessary to ensure equitable com-
parison. For image-based methods, we used two RGB
images of one individual from the front- and back-views,
which can obtain two pairs of pose and shape parameters
(601, B1, B2, B2). We extracted the unclothed and T-posed
body mesh of this individual from the mean shape param-
eters w and measured the body mesh to obtain the an-
thropometric values. For ArtEq, IP-Net, and Body Point-
Net, which take complete point clouds as input, we predict
two posed SMPL models from the front and back complete
scans of an individual. For ArtEq and IP-Net, which output
SMPL parameters, we follow a process similar to that of
image-based methods, using the mean shape vector to gen-
erate the T-posed body as the final result. For Body Point-
Net, which directly regresses SMPL vertices instead of pa-
rameters, the predicted SMPL models lack explicit shape
parameters, preventing the same processing as image-based
methods. Instead, we first apply PoseNormNet to normalize
the two models into T-posed SMPL meshes. These posture-
normalized models are then registered and averaged vertex-
to-vertex to produce a mean T-posed model, from which the
final measurements are extracted.

Since all methods output SMPL bodies, we extract measure-

ment values from the final results as described in Section[Z.1]

and compare them with the ground-truth values. To ensure

a comprehensive evaluation, we use box plots to illustrate

measurement error distributions (Figure. 9] and Figure. [10)
and provide mean and standard deviation tables (Table
Tabel [6) for a clearer quantitative comparison of measure-
ment accuracy across different methods. The red and bold
values in each row highlight the lowest mean and standard
deviation. These additional experiments further validate the
effectiveness and advantages of our approach.

8.3. By-products

Figure [I1] and Figure [I2] report the performance on pose
estimation based on FAUST and 4D-Dress dataset, respec-
tively.

8.4. Evaluation on challenging scans from low-cost
devices

In previous experiments, we relied on front- and back-view
partial point clouds extracted with RealPartialScan from
the public FAUST and 4D-Dress datasets. These datasets
were acquired in multi-camera studios equipped with pro-
fessional active-stereo or structured-light systems. The re-
sulting meshes are high-resolution, have been carefully de-
noised and topologically cleaned. Consequently, the partial
point clouds produced by RealPartialScan are relatively uni-
form, contain few holes, and have low noise.
By contrast, we captured a more challenging real-world
dataset with two consumer devices: Orbbec Astra 2
(structured-light, 2.5-3m range) and CR-Scan Otter (hand-
held, around 1m range). Astra 2 delivers a single depth
frame per view at a 2.5-3m range; the data suffers from
artefacts, missing regions, and noise. CR-Scan Otter per-
forms a one-to-two-minute handheld sweep. The working
distance for the CR-Scan Otter is within 1 meter, which
needs to be scanned by moving the scanner from head to
feet slowly to capture many small point patches and regis-
ter all the patches with global optimization to form a point
cloud. During this scanning process, unavoidable subject
micro-motion causes non-rigid mis-registration, accuracy
fluctuations, and seam gaps (Check Table [/| for more in-
formation).
The dataset consists of 42 real-world front and back scan
pairs from six volunteers: 24 pairs with an Orbbec Astra 2
and 18 pairs with a CR-Scan Otter. The resulting dataset
(Fig. [[3) comprises
* 26 pairs in unconstrained everyday poses;
* 8 pairs in which the same forearm is occluded in both
views;
* 8 pairs with deliberate partial occlusion of the waist.
The results in Table || were obtained without any complex
post-processing: each scan was fed directly into the network
in its raw form, preserving depth-dependent noise (Astra 2),
patch-fusion drift (Otter), holes, and other artifacts. Apart
from a simple threshold-based filter to remove static back-
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Figure 11. Pose estimation results of TrioNet based on FAUST dataset: the red point clouds are captured from the front-view of bodies in
the FAUST dataset, while the blue point clouds are the back-view captures. The meshes following the point clouds are the posed bodies
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Table 7. Data characteristics and key challenges associated with two low-cost scanning devices.
Device Capture protocol Key challenges
Orbbec Astra 2 * Single-view depth capture at e Increased noise at longer capture distances.
(structured-light, ~2.5-3m. * Artefacts and missing regions (holes) in the
fixed setup) scanned point cloud.
Price: $353 .

Insufficient accuracy and completeness of ac-
quired geometry.

CR-Scan OTTER ¢ 1-2min hand-held scanning at

Slight subject motion leads to non-rigid mis-

(hand-held, real-time around 1 m. alignment.
registration) * Continuous alignment of sequen- ¢ Global fusion may introduce local drift and
Price: $899 tial point patches during device visible seam gaps.
movement. * Clothing wrinkles can cause missing data
(holes).
e Varying scanning distances during hand-held
movement result in uneven point-cloud accu-
racy.
ground points, no denoising, registration, or hole filling was is still able to produce reasonably reliable anthropometric
applied. Despite these low-cost scanning conditions and measurements using unprocessed, directly captured data.

the absence of professional data refinement, MeasureXpert Furthermore, as mentioned before, we designed two
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Figure 12. Pose estimation results of TrioNet based on 4D-Dress dataset: the red point clouds are captured from the front-view of bodies in
the 4D-Dress dataset, while the blue point clouds are the back-view captures. The meshes following the point clouds are the posed bodies

TrioNet predicted.

Table 8. Measurement errors across devices (unit: cm)

bust underbust hip waist thigh knee

arm elbow wrist relbow lelbow rwrist Iwrist

Astra2 = 2.15 2.58 417 414 349 099
Otter 2.58 2.25 3.60 220 1.72

0.69 0.96

1.72  1.83  1.06 1.64 2.12 1.28 0.84
1.01 197 1.17 1.74 221 145  0.88
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Figure 13. The upper eight point clouds were captured with the
Orbbec Astra 2, and the lower eight with the CR-Scan Otter 3D
Scanner. The red rectangles indicate designed postures.

occlusion-specific poses in our newly collected dataset,
where the same region (e.g., forearm or waist) is occluded
in both views. We compared performance under occlu-
sion and no-occlusion conditions. For the waist and sin-
gle wrist, the average errors under occlusion were 4.69cm

and 1.28cm, respectively, while the errors without occlu-
sion were 3.64cm and 1.12cm, respectively.

8.5. Ablation studies

In this section, we will present more experimental evidence
through ablation studies.

8.5.1. Input design

Initially, we discuss whether a single partial point cloud as
input is enough for pose and shape prediction. We use the
architecture of PoseNormNet as our baseline and input a
partial dressed body scan. We refer to the PoseNormNet
configuration with the front partial point cloud as Base-F
and the one with the back partial point cloud as Base-B. We
compare the performance of Base-F, Base-B, and TrioNet
to discuss i) which partial point cloud is more suitable for
pose and shape estimation, and ii) if only one partial point
cloud is enough for shape estimation.



Table 9. Loss function design

TrioNet | TrioNet-C | TrioNet-D | TrioNet-E TrioNet-F
Shape v X v v v
Body L2 L2 L2 L2 L2
Landmarks CD CD L2 L24+LNorm | CD+LNorm

8.5.2. TrioNet loss functions design

Regarding the decoder architecture, we first discuss the two
input branches. We designed TrioNet-A and TrioNet-B, us-
ing three fully-connected layers to decode F i directly to
S* with L2 loss and CD, respectively, to discuss which loss
function is better for posed body point cloud reconstruction.
TrioNet with Single Decoder in two input branches (TSD)
in Section is the better one. We chose the better loss
function to design the multi-decoder TrioNet and compared
it with TSD to discuss if a multi-decoder is necessary in
Section

We then discuss the loss function of the shape branch. The
loss function should help supervise predicted T-posed body
and landmarks. Here, we do not discuss the choice of body
loss because we want to predict ordered points as vertices
of the SMPL surface, which can maintain the topology of
the SMPL model. Therefore, L2 is the best choice to super-
vise bodies, and no need to discuss. We concentrate solely
on the loss of landmarks prediction. We first discuss CD
or L2 loss, which is the best loss function for landmarks
prediction. In addition, when we focus on landmarks, we
draw inspiration from A-Net, a successful shape prediction
and measurement neural network. A-Net introduced con-
ducted experiments to prove that one-level landmark points
should be constrained on one plane, which is important for
measurement. We take the landmark constrain loss £y orm
(Eq. @ into consideration, which is similar to A-Net [29]
to constrain landmark points on the same planar:

el 1

21
ENm’m = Z ﬁ Z Z |l;] - l;k‘ (36)
=117

j=1k=1

Here, l; is one level of the landmark point set. There are two
different types of I;: the plane of [/ is parallel to the ground
or vertical. If the plane is parallel to the ground, [;; and [},
represent y—axis values of points. Otherwise, lgj and [/,
represent x—axis values of points.

Based on these functions, we define the variants TrioNet-
D through TrioNet-F. Additionally, we reintroduce TNS, as
mentioned in Section |4.3] under the name TrioNet-C to fa-
cilitate a more detailed comparison. The loss functions for
TrioNet, TrioNet-C, TrioNet-D, TrioNet-E, and TrioNet-F
are presented in Table[9]

8.5.3. OR-Net design

In Section [4.3] we demonstrated that OR-Net significantly
improves prediction performance on both T-posed meshes

and measurement values. In this section, we aim to further
investigate the network architecture and its associated loss
functions to achieve more accurate measurement values.
We compare the following designs: i) We split offset learn-
ing and regression into two tasks, where regression di-
rectly operates on the landmarks predicted by TrioNet to
obtain measurement values. We refer to this structure as
Regression-only for value prediction; ii) We adopt the OR-
Net structure but focus on the design of the loss functions.
Since the landmarks predicted by TrioNet are not strictly
constrained to the ground truth measurement-level planes
by the current loss function, and we need to predict values
based on these landmarks, we revisit the conclusion drawn
from A-Net: ensuring that all landmark points at the same
level are constrained to a single plane is critical for accurate
measurements. We design the OR-Net with the loss func-
tion as:

Eop = ‘Cvalue + £lmk: + Ltpose + fY*CNorm (37)

and conduct four experiments with v = 0, v = 1/3,
v = 2/3, and v = 1, which we denote as 0-Norm
experiment (OR-Net), 1/3-Norm experiment, 2/3-Norm
experiment, and 1-Norm experiment, respectively.

8.5.4. Results and discussions

To evaluate the performance of TrioNet, Base-F, Base-B,
and TrioNet variants A to F, we used the Chamfer distance
(CD), mean squared error (MSE), and mean absolute er-
ror (MAE) to calculate vertex-to-vertex errors between pre-
dicted and ground-truth meshes. The results in 0.lmm unit
are presented in Fig. [T4]

We first compare among Base-F Base-B and TrioNet. The
performance of shape prediction is comparable for single
partial inputs; however, for posed body prediction, the front
view outperforms the back view. We attribute this to the fact
that the back view typically experiences greater occlusion,
leading to the loss of hand or forearm posture information.
However, TrioNet, taking both front and back view as input,
significantly improves performance in both pose estimation
and shape estimation. This indicates that one partial point
cloud is insufficient for accurate body estimation, whereas
two partial point clouds provide adequate accuracy for this
task.

When comparing TrioNet-A with TrioNet-B, the L2 loss
shows better performance in estimating the front and
back posed bodies. Furthermore, comparing TrioNet with
TrioNet-B reveals that the multi-decoder architecture out-
performs the single-decoder in posed body estimation. This
improved pose estimation leads to more accurate shape es-
timation. Therefore, for the pose branches, the combination
of a multi-decoder architecture with L2 loss and boundary
constraints proves to be the most effective design.



MSE_T (0.1 mm)
MAE_T (0.1 mm)

019.47 1p48.15
L1 |

CD_T (0.1 mm)

50 200 1 200
0.34 069 066 111 119 053 041 039 . |aaade 2534 262 2420 2 5463 4414 4318 6124 8570 72,47 206 10480 1302 54l 53,92
1 0
TrioNet Base-F Base-B A B C D E F TrioNet Base-F Base-B A B C D E F TrioNet Base-F Base-B A B C D E F

1750
3000

1500
25001

)
5 B
38 u
s o
H:g
MAE_front (0.1 mm)
)

: _
4 £
g 2000 ; 500
é 50 1500 ‘g 400
| | g
ﬁ 500 1000 8‘ 300
200 %
250 500 4
91,00 79.79 66.87 61.94 62,10 100 @ % %
olo77 190 137 B2 105 089 o091 o /2321 2500 2 56,87 61,94 6210 2 %%
TrmlNet Bas‘erF Ba;e—B lll é (‘: IS é I‘: Tril)‘NEt Bas‘erF Bas‘erB A ‘B (‘: IS é I; TrIDNEt Base F Base B A C E
800
1750 3000 00
1500 0 2 7
- — 2500 4
= 600 d
£ 1250 £ E W
- = 2000 4 500
< 1000 s E |
M % ] £ 400
5‘ 750 -’E‘ 1500 E
w w o 300
2 s00 £ 10007 o
200
250 00 ]%i %{ % J@
3.38 4.77 410 220 335 361 338 |B8se AR =22 9566 2432 9043|  1°

o

TrioNet Base-F Base-B A B c D E F TrioNet Base-F Base-B A

B c D E F

TrioNet BaseF BaseB A

Figure 14. The figure presents a comparative analysis of different model configurations across three error metrics: Mean Squared Error
(MSE), Mean Absolute Error (MAE), and Chamfer distance(CD) with 0.1mm as their units. Each box plot illustrates the error distribution
for configurations labeled TrioNet, Base-F, Base-B, and A through F, evaluated under T-posed body prediction, front-posed body prediction

and back-posed body prediction conditions.

When focusing on the loss design of shape estimation, we
observed that TrioNet-C performed the worst across all met-
rics, highlighting the necessity and validity of the Lg4qpe
design. Comparing TrioNet-D and TrioNet-E, we found
that using L2 loss to learn landmarks, combined with nor-
malization constraints, significantly improved the overall
prediction accuracy. Under the constraint of normalization,
the performance difference between using L2 and CD as
loss functions was minimal. Interestingly, when CD was
used alone for landmark learning without normalization
constraints, the results for both pose estimation and shape
estimation were better. We think that £ ., distracts from
learning shape and pose. Therefore, we designed TrioNet
with shape loss, L2 loss as body loss, and CD as landmark
loss without £ n g

Table [I0] presents the means and standard deviations (in
centimeters) for 21 different measurement values across the
0-Norm, 1/3-Norm, 2/3-Norm, 1-Norm, and Regression-
only experiments. Overall, the 0-Norm experiment (OR-
Net) demonstrates the best performance among all designs,
suggesting that whether the landmarks are strictly con-
strained to a single plane has little impact on the regression
outcomes. When the landmarks are not rigidly confined to

a single plane, and instead the focus is shifted toward opti-
mizing both values and point positions, the results are com-
paratively better. Furthermore, a comparison between OR-
Net and Regression-only indicates that splitting optimiza-
tion and regression into two separate tasks is unnecessary.
Therefore, OR-Net is the best design for our task.



Measurement 0-Norm 1/3-Norm 2/3-Norm 1-Norm Regression-only
Levels Mean STD | Mean STD | Mean STD | Mean STD | Mean STD
bust 141 114 | 145 114 | 141 116 | 143 1.14 | 141 1.14
under bust 150 124 | 1.57 131 | 153 128 | 1.53 127 | 1.50 1.24
hip 1.23  1.05 | 124 1.13 | 1.28 1.10| 1.26 1.11 | 1.23 1.09
waist] 1.79 155 | 1.86 167 | 1.83 159 | 1.79 1.62 | 1.83 1.58
waist2 183 156 | 1.89 1.68 | 1.87 1.63 | 1.84 1.64 | 1.84 1.59
waist3 1.87 1.61 | 194 1.68 | 190 1.66 | 191 1.66 | 1.89 1.62
waist4 188 1.64 | 19 1.69 | 1.89 1.67 | 191 1.65 | 1.89 1.63
waist5 182 157 | 1.89 164 | 1.84 160 | 1.87 1.62 | 1.84 1.56
waisto 1.73 147 | 1.82 151 | 1.74 149 | 1.75 150 | 1.73 1.45
right middle thigh | 0.95 0.85 | 098 088 | 099 0.86 | 1.00 0.89 | 0.97 0.86
left middle thigh | 0.97 0.87 | 1.00 090 | 1.00 0.89 | 1.03 091 | 1.00 0.88
right knee 041 034 | 041 035 | 040 037 | 043 036 | 041 0.36
left knee 039 033 | 040 035] 038 035 ] 042 035 | 0.39 0.35
right calf 047 042 | 047 043 | 048 043 | 052 044 | 047 0.42
left calf 051 046 | 052 047 | 053 048 | 053 049 | 052 0.46
right upper arm 0.62 051 | 063 054 | 064 053] 063 052 0.63 0.51
left upper arm 0.68 056 | 071 0.61 | 070 056 | 0.70 0.58 | 0.70 0.57
right elbow 033 030 ] 033 029 | 033 0.28 | 033 028 | 033 0.28
left elbow 032 029 | 033 031 ] 033 030 033 029 | 0.33 0.28
right wrist 021 017 | 022 0.8 | 021 0.17 | 022 0.17 | 0.21 0.17
left wrist 0.17 0.15 | 0.17 0.14 | 0.17 0.14 | 0.17 0.14 | 0.17 0.14

Table 10. Comparison of measurements across different OR-Net designs (Unit: cm).
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