
One Object, Multiple Lies: A Benchmark for Cross-task Adversarial Attack on
Unified Vision-Language Models

Supplementary Material

7. Dataset Construction Details
7.1. Comparison with Other Adversarial Attack

Benchmarks
Table 4 compares CrossVLAD with existing adversarial
attack benchmarks for vision-language models. While
some prior works have considered unified VLMs or mul-
tiple tasks, CrossVLAD uniquely combines comprehensive
multi-task coverage with explicit cross-task evaluation met-
rics. Additionally, our benchmark contains a substantial
dataset size of 3,000 carefully curated samples, enabling
statistically robust evaluation.

Table 4. Comparison with existing adversarial attack benchmarks
for vision-language models.

Benchmark Unified VLMs Multi-tasks Cross-task Evaluation Attack Type Dataset Size

CrossVLAD (Ours) ✓ ✓ ✓ target 3k
vllm-safety-bench[31] ✓ ✗ ✗ untarget 2k
ROZ-benchmark[32] ✗ ✗ ✗ untarget ✗

MultiTrust [42] ✓ ✗ ✗ both 200

7.2. Selection Criteria
The CrossVLAD benchmark was constructed using follow-
ing filtering approach:
• Excluded images containing potential target categories to

avoid pre-existing confusion
• Verified source categories existed in the image
• Limited the maximum number of object instances per im-

age to 5
• Ensured category uniqueness within each image to avoid

ambiguity
• Object size constraints: Selected objects occupying be-

tween 10% and 50% of the image area
• Caption verification: Required objects to appear in at

least 3 of the 5 MSCOCO captions

7.3. Annotation Process
For each selected image, we:
• Preserved original MSCOCO annotations (bounding

boxes, category labels)
• Randomly selected one qualified source object per image
• Identified appropriate target category from our predefined

change-pairs
• Used GPT-4 to generate target captions with the following

prompt:

You are given a picture with a primary
object called "[SOURCE_CATEGORY]".

Below are 5 captions that describe the
image including this object:

1. [CAPTION_1]
2. [CAPTION_2]
...
5. [CAPTION_5]

Task: Imagine replacing the primary object
"[SOURCE_CATEGORY]" with a new object "[
TARGET_CATEGORY]". Create a caption
describing the scene with this
replacement.

We implemented quality control by verifying that each
generated caption: (1) explicitly mentioned the target cate-
gory, (2) excluded the source category, and (3) maintained
coherence with the original image context. Multiple gener-
ation attempts were made when necessary to ensure quality
standards were met.

7.4. Complete Change-Pair List
The complete list of 79 change-pairs used in CrossVLAD is
provided in table 5

8. Pseudocode
Algorithm 1 presents the detailed procedure of our CRAFT
method. The procedure begins by initializing the adversar-
ial example and locating the token indices corresponding to
the source object region. In each iteration, we extract image
features from the current adversarial example and isolate
the features of the target region. We then obtain text em-
beddings for both positive (target) and negative (source and
other) categories. The contrastive loss is computed to align
the region features with the target category while pushing
them away from negative categories. Finally, we update the
adversarial example using the PGD algorithm with the com-
puted gradient.

9. Experimental Details
9.1. Implementation Details of Compared Methods
We provide detailed implementation information for all
compared methods to ensure reproducibility and fair com-
parison.

Attack-Bard We adopt the text description attack from
Attack-Bard [6], which maximizes the log-likelihood of
predicting a target sentence. For our evaluation, we use



Table 5. Complete source-target object change pairs in CrossVLAD.

Category Number of Pairs Source→ Target Examples

Vehicle 8 pairs bicycle→ motorcycle, motorcycle→ bicycle, car→ bus,
bus→ truck, train→ airplane, truck→ car, airplane→ bus, boat→ train

Outdoor 5 pairs traffic light→ stop sign, fire hydrant→ stop sign, stop sign→ traffic light,
parking meter→ bench, bench→ parking meter

Animal 10 pairs bird→ cat, cat→ dog, dog→ cat, horse→ sheep, sheep→ cow,
cow→ horse, elephant→ bear, bear→ elephant, zebra→ giraffe,
giraffe→ zebra

Accessory 5 pairs backpack→ handbag, umbrella→ handbag, handbag→ suitcase,
tie→ handbag, suitcase→ backpack

Sports 10 pairs frisbee→ sports ball, skis→ snowboard, snowboard→ skateboard,
sports ball→ kite, kite→ baseball bat, baseball bat→ baseball glove,
baseball glove→ tennis racket, skateboard→ surfboard, surfboard→ skis,
tennis racket→ frisbee

Kitchen 7 pairs bottle→ wine glass, wine glass→ cup, cup→ fork, fork→ knife,
knife→ spoon, spoon→ bowl, bowl→ bottle

Food 10 pairs banana→ apple, apple→ orange, sandwich→ hot dog, orange→ banana,
broccoli→ carrot, carrot→ hot dog, hot dog→ pizza, pizza→ donut,
donut→ cake, cake→ apple

Furniture 6 pairs chair→ couch, couch→ potted plant, potted plant→ bed,
bed→ dining table, dining table→ toilet, toilet→ chair

Electronic 6 pairs tv→ laptop, laptop→ mouse, mouse→ remote, remote→ keyboard,
keyboard→ cell phone, cell phone→ tv

Appliance 5 pairs microwave→ oven, oven→ toaster, toaster→ sink,
sink→ refrigerator, refrigerator→ microwave

Indoor 7 pairs book→ clock, clock→ vase, vase→ scissors, scissors→ teddy bear,
teddy bear→ hair drier, hair drier→ toothbrush, toothbrush→ book

GPT-generated captions that include the target object cate-
gory while excluding the source object category. The attack
is formulated as:

max
x

N∑
i=1

L∑
t=1

log pθi(yt|x, p, y<t), s.t. ∥x−xnat∥∞ ≤ ϵ

(13)
where yt represents tokens in the target caption, p is the

prompt, and θi denotes model parameters. We optimize this
objective using the PGD algorithm with the same hyperpa-
rameters as our primary method.

Mix.Attack Since the original Mix.Attack [31] was de-
signed for untargeted attacks, we modified it for our tar-
geted setting. Our adaptation aligns the adversarial image
with the target text while pushing it away from the original
descriptions. Specifically, we use three text references: two

from the original MSCOCO caption annotations and one
from our generated target caption labels. The optimization
objective encourages similarity between the image and tar-
get caption representations while reducing similarity with
the original captions. All image and text features are ex-
tracted using the attacked model’s own encoders to ensure
alignment with the model’s internal representations.

MF-it For MF-it [43], we directly compute the similar-
ity between image features and target caption text features,
then minimize this similarity through adversarial optimiza-
tion. This approach attempts to align the perturbed image’s
feature representation with the textual representation of the
target category. The optimization is performed using PGD
with the same constraints as our main experiments.



Algorithm 1 CRAFT: Cross-task Region-based Attack
Framework with Token-alignment

Require: Input image I , source object bounding box bs,
source category cs, target category ct, perturbation bud-
get ϵ, iteration number T , step size α

Ensure: Adversarial example Iadv
1: Iadv ← I {Initialize adversarial example}
2: R ← RegionTokenLocalization(bs) {Localize tokens

corresponding to source object}
3: for t = 1 to T do
4: FI ← ImageEncoder(Iadv) {Extract image feature

tokens}
5: FR ← FI [R] {Extract region feature tokens}
6: Epos ← TextEncoder(ct) {Encode target category}
7: Eneg ← TextEncoder(cs, other categories) {Encode

negative categories}
8: L ← ContrastiveLoss(FR, Epos, Eneg) {Compute

alignment loss}
9: g ← ∇Iadv

L {Compute gradient}
10: Iadv ← Clip(Iadv+α ·sign(g), I−ϵ, I+ϵ) {Update

with PGD}
11: end for
12: return Iadv

MF-ii For MF-ii[43], we first generate a target image us-
ing Stable Diffusion [28] with our target caption label as the
prompt. We then minimize the feature distance between the
adversarial image and this generated target image. This ap-
proach attempts to make the adversarial image perceptually
similar to an image of the target category while maintaining
the ℓ∞ perturbation constraint.

9.2. Additional Experimental Results

Method Tasks Evaluate Metrics
IC OD RC OL CTSR-3

TLM-IC 0.935 0.241 0.346 0.296 0.305
TLM-OD 0.451 0.827 0.683 0.518 0.54
TLM-RC 0.523 0.548 0.703 0.724 0.568
TLM-OL 0.244 0.257 0.277 0.736 0.252

CRAFT(ours) 0.765 0.565 0.849 0.649 0.609

Table 6. Performance comparison of CTSR-3 between task-
specific Training Loss Minimization (TLM) attacks and our
CRAFT method. TLM-IC, TLM-OD, TLM-RC, and TLM-OL
represent attacks optimized specifically for Image Captioning, Ob-
ject Detection, Region Categorization, and Object Location tasks,
respectively. Bold values indicate the best performance for each
column.

9.2.1. Cross-task Transferability of Task-specific Meth-
ods Results with CTSR-3

Table 6 presents the transferability comparison between
task-specific TLM attacks and our CRAFT method using

the CTSR-3 metric. These results complement those in Sec-
tion 5.3 by showing performance when success on at least
three tasks is required rather than all four. While the over-
all trends remain consistent with the CTSR-4 results, the
higher CTSR-3 values provide additional insights into par-
tial transferability. Notably, the gap between task-specific
attacks and CRAFT is smaller under this more relaxed eval-
uation criterion, though CRAFT still maintains its advan-
tage, particularly for tasks with spatial components.

9.2.2. Ablation Study with CTSR-3
Figure 6 shows the impact of perturbation budget (ϵ) and it-
eration count on CTSR-3 performance. The trends broadly
mirror those observed for CTSR-4 in Section 5.5, but with
higher overall success rates as expected from the more le-
nient evaluation criterion. The CTSR-3 results further sup-
port our choice of ϵ = 16/255 and 100 iterations as the op-
timal configuration, offering a favorable balance between
attack success rate and computational efficiency. Interest-
ingly, the performance plateau and potential decrease with
very high iteration counts is less pronounced for CTSR-3,
suggesting that overfitting to specific tasks is less problem-
atic when success on only three out of four tasks is required.
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Figure 6. Impact of perturbation budget (ϵ) and iteration count on
CTSR-3 performance with Florence-2 model. Each line represents
a different ϵ value with corresponding step size α.

9.3. Additional Visualization Examples
Figure 7 illustrates additional successful examples, while
Figure 8 complements Section 5.4 by demonstrating that
target replacement often becomes unfeasible when modi-
fications occur across categories. However, it can be ob-
served that in most instances, these cross-category alter-
ations also disrupt the original semantic content of the im-
age, enabling untargeted attacks.

9.4. Evaluation on commercial VLMs
While our primary focus is on white-box models where ac-
cess to model parameters is necessary, we also conducted



Figure 7. Qualitative examples of CRAFT attack on Florence-2 model across four vision tasks: object detection, object localization, image
captioning, and region categorization, with ε = 16/255.

Figure 8. Failed examples of CRAFT attack on Florence-2 model across four vision tasks: object detection, object localization, image
captioning, and region categorization, when using cross-category substitutions, with ε = 16/255.



a preliminary evaluation on the black-box transferability
of our adversarial attacks to commercial Vision Language
Models (VLMs). To this end, we investigate whether ad-
versarial examples generated for an open-source model can
successfully deceive a closed-source, commercial model.

Specifically, we generated adversarial examples using
Florence-2, a publicly available model, with the objective
of causing a cat-to-dog misclassification. These gener-
ated images were then presented to GPT-4V, a prominent
commercial VLM, to assess the transferability of the at-
tack. As illustrated in Figure 9, the adversarial examples
crafted on Florence-2 were effective in misleading GPT-4V,
which consequently misidentified the cats in the images as
dogs. This successful transfer demonstrates the practical
relevance of our attack methodology in a black-box setting,
even though it was conducted on a limited scale.

Figure 9. Successful cat-to-dog attacks transferring to GPT-4V.

9.5. Comparison with Object Detection Attack
Methods

To further contextualize the performance of our method, we
conducted a comparative analysis against established attack
methodologies originally designed for object detection.

The results of this comparison on the Florence-2 model
are presented in Table 7. The findings indicate that while
the adapted baseline methods achieve strong performance
on the object detection (OD) task itself, their effectiveness
diminishes significantly when transferred to other vision-
language tasks such as Image Captioning (IC), Region Cat-
egorization (RC), and Object Localization (OL). In contrast,
our method, CRAFT, demonstrates superior cross-task ef-
fectiveness. Although it shows slightly lower performance
on the OD task, it significantly outperforms both baselines
across all other evaluated tasks and achieves the highest
Cross-Task Success Rates (CTSR-4 and CTSR-3).

Method IC↑ OD↑ RC↑ OL↑ CTSR-4↑ CTSR-3↑

[2] 0.48 0.75 0.68 0.52 0.38 0.52
[27] 0.45 0.67 0.64 0.50 0.32 0.48
CRAFT (ours) 0.77 0.57 0.85 0.65 0.47 0.61

Table 7. Comparison with object detection attack baselines on
Florence-2. Our method demonstrates superior cross-task trans-
ferability.

9.6. Effect of Bounding Box Source
In our primary experiments, we assume access to ground-
truth bounding boxes to define the target regions for our

attacks. To assess the practical applicability of our method
in scenarios where such ground-truth data is unavailable,
we conducted an ablation study to evaluate the impact of
using bounding boxes generated by a state-of-the-art object
detector.

For this analysis, we replaced the ground-truth bound-
ing boxes with boxes detected by YOLOv10. We then
performed the same attack procedure on the Florence-2
model. The comparative results are detailed in Table 8. The
data shows that the performance difference between using
YOLOv10-detected boxes and ground-truth boxes is min-
imal across all evaluated tasks. This experiment demon-
strates that our attack’s effectiveness is not contingent on
having perfect bounding box information and that compara-
ble results can be achieved using high-quality, readily avail-
able object detectors.

Box Source IC↑ OD↑ RC↑ OL↑ CTSR-4↑ CTSR-3↑

YOLOv10 0.75 0.53 0.81 0.64 0.45 0.60
Ground-truth 0.77 0.57 0.85 0.65 0.47 0.61

Table 8. Performance comparison using bounding boxes from a
SOTA detector (YOLOv10) versus ground-truth boxes. The mini-
mal difference validates our experimental assumption.


