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1. 3D Open-vocabulary Segmentation

2D Open-vocabulary Segmentation. Inspired by prior
successful works, we innovatively introduce the integration
of 2D open-vocabulary detector models, such as Grounding
DINO, promptable 2D segmentation models, such as SAM,
image tagging models like RAM. The integrated 2D open-
vocabulary model can automatically segment objects within
images without the need for any textual input.

Specifically, given an input image, we first employ an
image tagging model, RAM to get the tags of the image.
Then, given the tags, we employ Grounding DINO to gener-
ate precise boxes for objects or regions within the image by
leveraging the textual information in tags as condition. Sub-
sequently, the annotated boxes obtained through Grounding
DINO serve as the box prompts for SAM to generate precise
mask annotations. By leveraging the capabilities of these
robust expert models, our method enables the automatic la-
beling of an entire image.

3D Open-vocabulary Segmentation.  After 2D open-
vocabulary segmentation, the segmented images contain
rich semantic features for every object in the 3D scene.
We effectively lift these 2D masks to segment anything in
the 3D scene via radiance fields rendering. Given a pre-
trained 3D scene, inspired by recent works, we preserve all
attributes of the Gaussians, but add a semantic attribute to
integrate semantic information for each Gaussian. Then, to
assign each 2D mask a unique ID in the 3D scene, we need
to associate the masks of the same identity across different
views. We employ a well-trained zero-shot tracker to prop-
agate and associate these masks.

In addition to the existing Gaussian properties, we intro-
duce a new parameter, semantic attribute, to each Gaussian.
The semantic attribute is a learnable and compact vector,
which is used to distinguish semantic categories in whole
3D scene. To optimize the introduced attribute of each
Gaussian, we render semantic attribute into 2D images in
a differentiable manner as:
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where Sy represents the 2D semantic labels of pixel k,
derived from Gaussian point semantic attributes via -
blending. Here, y,, denotes the semantic attribute of the 3D
Gaussian point p, and «, is the influence factor of this point

in rendering pixels. After associating 2D instance labels
across each training view, we apply the grouping loss and
3D Gaussian reconstruction loss to supervise the optimiza-
tion progress.

Extracting objects from 3DGS introduces holes, which
we inpaint using LaMa. This inpainting ensures more nat-
ural results when objects undergo displacement due to ex-
ternal forces. The whole pipeline of 3D open-vocabulary
segmentation is shown in Fig. 1.

2. Implementation Details for Baselines

In this section, we elaborate on the implementation details
of baselines used for comparison to our proposed method.
For PhysDreamer, we used the pre-trained models provided
in the official code repository', as the training code is not
made available. For Physics3D, we train the models using
the code from official code repository”. For DreamPhysics,
we train the models using the code from official code repos-
itory”. All other hyperparameters remain unchanged. The
trained models are then used for qualitative evaluation.

3. User Study

We use Tencent Survey” to recruit participants for the hu-
man preference evaluation. The survey is fully anonymized.
For each scenario, we provided video clips and asked the
participants to give each video a score. A total of 41 vol-
unteers participated in the study, including 3 professionals
from the 3D art industry.

4. Video Visualization

We provide generated videos in the project page’ for a better
motion visualization. We also show the simulated interac-
tive motion in Fig. 2.

5. Explanation of RS/AS scores

We assess each video frame’s artistic value using the
LAION aesthetic predictor. The final aesthetic score (AS) is
the average of all frame scores, reflecting layout, color har-
mony, photo-realism, naturalness, and artistic quality. As
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Figure 1. The whole pipeline for 3D Open-vocabulary Segmentation.

mentioned in our Supp.Mat, we provided video clips and
asked the participants to give each video a score (RS) by
anonymous questionnaire. A total of 41 volunteers partici-
pated in the study.

6. More Analysis about Material Property Dis-
tribution Prediction

In our paper, we train an MPDP model using part of the
data from Physics3D. However, with the advancement of
3D content creation networks, such as LGM, we can gen-
erate diverse objects through these methods and utilize
Physics3D for m material property distribution prediction
to create additional training data. This approach has the po-
tential to further enhance the performance of our model and
represents a direction for our future work.

7. More Details about Material Point Method
(MPM)

The Material Point Method (MPM) is an advanced numeri-
cal technique for simulating the behavior of continuum ma-
terials. It discretizes a material body into material points,
commonly referred to as particles, which carry essential
properties such as mass, velocity, deformation gradient, and
stress. These particles interact with a background computa-
tional grid, which facilitates spatial derivative calculations
and the application of external forces.

MPM consists of two primary phases: 1) Particle-to-Grid
(P2G) Transfer: Particles transfer their properties to the
grid, enabling the computation of global quantities such as
forces and accelerations. 2) Grid-to-Particle (G2P) Trans-
fer: Updated grid values, such as velocities and positions,
are mapped back to the particles, ensuring their motion
aligns with the computed dynamics.

This dual transfer mechanism allows MPM to efficiently
handle large deformations and complex interactions in con-
tinuum materials.

Particle-to-Grid (P2G) Transfer. During this phase, the
particles’ properties, such as mass and momentum, are

mapped to the computational grid using interpolation func-
tions. The mass at a grid node ¢ is computed as:
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where m,, is the mass of particle p, and wy, is the interpola-
tion weight (often derived from a B-spline kernel) between
particle p and grid node ¢. The momentum at the grid node
is similarly updated:

mpvy = wim, (v + Cplx; —x}))
P

where v} is the velocity of particle p, C} represents the
affine velocity field gradient, and x; and x;; are the positions
of the grid node and particle, respectively.

Grid Update. Once particle properties are transferred, grid
velocities are updated by accounting for external forces, in-
ternal stresses, and gravity. The velocity at grid node i is
computed as:
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where At is the time step, T

» 18 the stress tensor of the
particle p, V;)O is the initial volume of the particle, and g is
the acceleration due to gravity.

Grid-to-Particle (G2P) Transfer. After the grid is up-
dated, the changes in velocity and momentum are trans-
ferred back to the particles. The particle velocity is updated

using the grid velocities and interpolation weights:
+1 _ +1
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and the new position of the particle is given by:
n+l _ n n+1
x, " =x, +Atv,".

Additionally, the affine velocity field gradient Cg“ and de-
formation gradient FZ“ are updated as:
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Figure 2. More visual results of our method.
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The Material Point Method effectively combines La-
grangian (particle-based) and Eulerian (grid-based) ap-

proaches, making it highly suitable for simulating materials
that experience large deformations, fractures, and complex

interactions.



8. Analysis of Failure Cases

As noted in our limitation, segmentation failure can be a
bottleneck, especially in complex environments with oc-
cluded objects. Sim Anything may struggle to segment the
entire object, resulting in unnatural simulations. We will
elaborate in the final paper.

9. Selection of Material Properties

Young’s modulus and Poisson’s ratio are essential for un-
derstanding an object’s motion under forces. Young’s mod-
ulus indicates stiffness, while Poisson’s ratio relates lateral
strain to axial strain. Predicting additional physical prop-
erties for 3D objects is a promising direction for future re-
search.

10. Material Properties in PGAS

PGAS adjusts the sample radius based on the object’s
Young’s modulus and curvature (Sec. 4.2 in the main pa-
per). Young’s modulus reflects material stiffness, while cur-
vature accounts for geometric complexity, allowing for ef-
fective management of material and shape variations. Al-
though incorporating more material properties could im-
prove granularity, Young’s modulus and curvature are suffi-
cient for accurately modeling soft, complex-shaped objects
in our experiments.

11. Ethical Statement

We confirm that all data used in this study were obtained
and utilized in compliance with ethical standards. All par-
ticipants provided consent, or the data were sourced from
publicly available datasets with proper permissions. The
use and publication of these data and models pose no soci-
etal or ethical harm. Necessary precautions were taken to
respect individual rights, including privacy and ethical re-
search principles.
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