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1. Appendix A Related work
Semi-Supervised Semantic Segmentation (SSSS). Semi-
supervised semantic segmentation (SSSS) utilizes a small
amount of labeled data along with abundant unlabeled
data to improve segmentation performance while reduc-
ing annotation costs. The standard approach relies on
pseudo-labeling-based self-training, where models gener-
ate pseudo-labels for unlabeled data and use them for train-
ing. However, pseudo-labels often accumulate noise, lead-
ing to suboptimal results. To address this, various im-
provements have been proposed. Strong perturbation meth-
ods like ST++ [36] refine pseudo-labels through extensive
data augmentation, while DARS [6] and USRN [5] miti-
gate errors in minority classes using distribution alignment
and subclass clustering. Consistency regularization ensures
stable predictions by enforcing agreement across differ-
ent model variations, as seen in CPS [2] and CCT [21].
AEL [12] and UniMatch [34] introduce adaptive CutMix
and dual-stream learning to improve data diversity and gen-
eralization. Contrastive learning has also been applied in
methods like DCC [14] and U2PL [29], enhancing feature
representation and reducing confirmation bias. Recently,
Transformer-based SSSS has gained attention due to the
ability of Vision Transformers (ViTs) to model long-range
dependencies. SemiCVT [13] enforces class-wise consis-
tency between CNNs and Transformers, while other works
[15, 17] integrate ViTs into CPS-based frameworks, though
often as auxiliary components.
Cross-Domain Semantic Segmentation (CDSS) transfers
the source knowledge to the target mainly by alignment of
both domains and self-training on the target. The align-
ment based CDSS explore various domain alignment strate-
gies, e.g., adversarial training [8, 27], statistical match-
ing [28, 30], across diverse alignment spaces (e.g., input
[7, 26], feature [27] and output space [25]) to reduce sta-
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tistical differences between the two domains. Self-training-
based CDSS methods primarily employ pseudo-labeling
techniques to address the issue of inadequate target adapta-
tion. Related works introduce pseudo-label selection strat-
egy [1,16,19,22,39,41,42], strong augmentations [11] and
high-resolution consistency [10] to alleviate the issue of er-
ror accumulation.
Stable Diffusion for Semantic Segmentation. Inspired
by the success of SD [24]), prior works explore its po-
tential in semantic segmentation tasks by designing new
perception models [4, 33, 40] and synthetic new training
data [3, 20, 31, 35, 35]. Benefiting from large-scale text-to-
image pre-training, modifying SD as a backbone will enjoy
strong cross-domain transfer capabilities [4], but the dif-
fusion process and large denoising architecture will bring
huge inference overhead [40]. Synthetic data provides fea-
sible ideas for data scarcity semantic segmentation tasks.
Some advanced works attempt to extract semantic masks
during image generation and even don’t fine-tune the SD.
For instance, Nguyen et al. [20] and Wu et al. [32] refine
the text-to-image cross-attention maps and treat them as se-
mantic masks. Wu et al [31] add a perception head on SD
and fine-tune the added units using a few target samples to
generate paired data. However, this mode is prone to pro-
ducing out-of-domain data with simple semantics, which
makes it difficult for the model to learn useful knowledge
from it. [31]. Yang et al [35] fine-tuned SD on massive la-
beled data to generate target-style data, which limits its ap-
plication. Different from these methods, we focus on how to
fine-tune SD with massive pseudo-labeled data and force it
to generate diverse target-style training data in data scarcity
segmentation scenarios.

2. Appendix B Implementation Details
Fine-Tuning Stable Diffusion (SD). M is estimated by
thresholding the top 50% confidence-ranked pixel of each
class across the entire dataset, meaning that pixel pseudo-
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labels with confidence rankings in the top 50% are assigned
a value of 1 in M, otherwise 0. In all experimental tasks,
we fine-tune SD for 10k iterations, with the weights of the
text encoder CLIP [23] frozen. The fine-tuning image size
is fixed to 512×512, consistent with the pre-training. For
datasets with image sizes larger than 512, we randomly crop
512×512 image patches. The batch size is set to 4. We gen-
erally fine-tune SD for only one round.
Data Synthesis. We set the diffusion iterations to 50 for
SD. In Semi-Supervised Semantic Segmentation(SSSS), we
use all structured pseudo-labels of unlabeled data, as well
as semantic labels of a few labeled data as spatially con-
trolled synthetic images. We generate 10k synthetic training
data for Pascal-VOC, 5k for Cityscapes, 20k for ADE20K,
and 10k for COCO. In Cross-Domain Semantic Segmen-
tation(CDSS), we only use all structured pseudo-labels of
unlabeled target domain data as a control to synthetic im-
ages. For all CDSS tasks, we generate 5k training data
for Cityscapes. The spatial resolution of synthetic data
for Pascal-VOC and COCO is 512×512, consistent with
the labeled training data. For Cityscapes, due to its high
resolution and variable scale, we first randomly re-scale
the pseudo-labels within (0.5, 1), and then crop 512×512
patches with the proposed re-sampling strategy.
Details on Training Segmentation Models. For SSSS, we
first train Unimatch [34] for 50 epochs, and then add our
synthetic data to the labeled set to continue training. For
CDSS, we first train the UDA methods HRDA [10] and
DTST [38] for 20k and 10k iterations respectively, and treat
our synthetic data as the labeled source data and re-train the
UDA. During training, the synthetic data are resized to the
same size as the real data.

3. Appendix C Detailed Analysis
More observations on generative hallucinations using
pseudo-label. Fig. 1 shows more examples to demonstrate
the generative hallucination issues that occur with Stable
Diffusion under poorly structured pseudo-labels. Our pro-
posed structured pseudo-labeling strategy effectively allevi-
ates this issue, facilitating high-quality image generation.
Class IoU scores for cross-domain segmentation. Ta-
ble 1 demonstrates that our method still exhibits signifi-
cant advantages across various categories. Particularly, for
some challenging adaptation categories such as Bike, Train,
Truck, and Bus, our method significantly improves upon the
baseline methods, further validating the effectiveness of our
approach.
Image-level Class distribution of resampled synthetic
images. Fig. 2 illustrates the class imbalance issue un-
der semi-supervised learning. Certain minority classes such
as trucks, buses, and trains are difficult for the model to
learn sufficiently. Our method enriches their data distribu-
tion, greatly increasing the proportion of labels for these
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Figure 1. Visualization on generative hallucinations using pseudo-
label. Using poorly structured pseudo-labels (a) as a control condi-
tion leads to the illusion in the yellow box of (b), but the structured
ones (c) can alleviate this phenomenon as shown in (d).

minority classes. This provides the model with the oppor-
tunity to fully adapt to them.
Structured pseudo-labels (SPL) across object sizes. The
class-wise results (grouped by large, medium, and small
objects) show that SPL offers broad improvements: 1)
Medium-structured classes (e.g., Truck, Train, Bus, Wall,
Rider) benefit most, because they are highly sensitive to
spatial structure. 2) Small objects (e.g., Light ↑1.0, Sign
↑2.1) also improve, confirming SPL’s effect beyond large
regions. 3) Hard classes like Train (28.4→36.2) and Rider
(46.2→58.1) improve notably, showing gains are not lim-
ited to easily identifiable categories.
Compared to DatasetDM. To ensure fairness, we compare
with DatasetDM under the same fine-tuning (FT) scope (de-
noising UNet only), using both labeled data and reliable
pseudo-labels(PLs). In the table below, our method out-
performs DatasetDM in both FID and mIoU. Notably, PLs-
based FT yields minor improvements for DatasetDM, indi-
cating that directly using PLs for SD tuning is non-trivial.

4. Appendix D Parameter analysis

Number of synthesized images. Fig. 3 indicates that, with
an increase in the number of synthesized images, the perfor-



Unsupervised domain adaptation: GTA → Cityscapes (Val.)- ViT-Mix

Method Road S.walk Build. Wall Fence Pole Tr.Light Sign Veget. Terrain Sky Person Rider Car Truck Bus Train M.bike Bike mIoU

DAFormer [CVPR′22] [9] 95.7 70.2 89.4 53.5 48.1 49.6 55.8 59.4 89.9 47.9 92.5 72.2 44.7 92.3 74.5 78.2 65.1 55.9 61.8 68.3
HRDA [ECCV′22] [10] 96.4 74.4 91 61.6 51.5 57.1 63.9 69.3 91.3 48.4 94.2 79 52.9 93.9 84.1 85.7 75.9 63.9 67.5 73.8

Rtea [ICCV′23] [39] 97.1 75.2 92.6 63.5 51.8 58.2 66.5 71.2 91.1 49 96.8 81.5 54.2 94.2 84.8 86.6 75.7 62.2 66.7 74.7
MIC [CVPR′23] [11] 97.4 80.1 91.7 61.2 56.9 59.7 66.0 71.3 91.7 51.4 94.3 79.8 56.1 94.6 85.4 90.3 80.4 64.5 68.5 75.9

Pseudo-SD [Ours] 97.6 81.8 92.2 62.3 59.9 60.5 66.0 73.9 92.2 53.2 95.1 80.4 58.9 93.8 84.8 89.9 83.3 61.9 73.9 77.0

Unsupervised domain adaptation: Synthia → Cityscapes (Val.) - ViT-Mix

DAFormer [CVPR′22] [9] 84.5 40.7 88.4 41.5 6.5 50.0 55.0 54.6 86.0 – 89.8 73.2 48.2 87.2 – 53.2 – 53.9 61.7 60.9
HRDA [ECCV′22] [10] 85.2 47.7 88.8 49.5 4.8 57.2 65.7 60.9 85.3 – 92.9 79.4 52.8 89.0 – 64.7 – 63.9 64.9 65.8

Rtea [ICCV′23] [39] 87.8 49.0 90.3 50.3 5.5 58.6 66.0 61.4 86.8 – 93.1 79.5 53.1 89.5 – 65.1 – 63.7 64.6 66.5
MIC [CVPR′23] [11] 86.6 50.5 89.3 47.9 7.8 59.4 66.7 63.4 87.1 – 94.6 81.0 58.9 90.1 – 61.9 – 67.1 64.3 67.3

Pseudo-SD [Ours] 87.6 51.8 90.7 48.4 9.3 61.3 66.7 63.9 88.7 – 95.9 82.0 60.5 91.6 – 63.1 – 66.7 68.7 68.6

Source-free Unsupervised domain adaptation:: GTA → Cityscapes (Val.) - ResNet 101

DTST [CVPR′23] [38] 93.5 57.6 84.7 36.5 25.2 33.4 44.7 36.7 86.8 42.8 81.3 62.3 37.2 88.1 48.7 50.6 35.5 48.3 59.1 55.4
CROTS [IJCV′24] [18] 92.0 52.4 85.9 37.3 35.8 34.6 42.2 38.4 86.9 45.6 91.1 65.1 36.1 87.3 41.6 51.1 0.0 41.4 56.2 53.7

Cross-match [ICCV′23] [37] 94.5 65.5 87.4 45.7 42.6 42.3 46.7 54.5 88.3 48.0 84.7 66.0 33.4 89.9 53.5 56.8 0.0 46.9 49.4 57.7

Pseudo-SD [Ours] 94.1 58.6 87.9 48.7 44.3 43.4 47.4 54.1 87.9 53.1 93.2 69.7 48.4 92.5 63.7 65.6 37.5 54.6 65.3 63.6

Source-free Unsupervised domain adaptation:: Synthia → Cityscapes (Val.) - ResNet 101

DTST [CVPR′23] [38] 88.9 45.8 83.3 13.7 0.8 32.7 31.6 20.8 85.7 – 82.5 64.4 27.8 88.1 – 50.9 – 37.6 57.3 50.7
CROTS [IJCV′24] [18] 89.4 41.6 82.7 15.1 1.2 34.7 33.7 25.7 83.7 – 87.9 66.6 34.6 85.4 – 45.9 – 43.5 49.6 51.3

Cross-match [ICCV′23] [37] 91.5 55.5 85.4 34.4 8.3 40.8 40.0 44.4 86.6 – 84.3 62.4 22.0 88.3 – 60.0 – 40.6 45.6 55.6

Pseudo-SD [Ours] 88.6 47.5 85.6 39.6 29.7 44.0 43.1 50.0 86.8 – 90.8 62.6 44.5 88.3 – 57.9 – 52.8 63.3 60.6

Table 1. Cross-Domain Semantic Segmentation performance (IoU in %).
Method Road SW BD. Veg. Sky Pers. mIoUL6 Car Truck Bus Train Wall Fence Terrain Rider mIoUM8 M.bike Bike Pole Light Sign mIoUS5 mIoU

Unimatch 97.4 79.3 90.5 91.3 94.1 77.6 88.3 92.2 28.9 33.6 28.4 36.7 48.1 57.9 54.3 48.7 53.3 72.7 56.6 65.9 73.9 64.5 65.4
Ours w/o SPL 97.1 77.7 90.2 90.7 94.0 75.7 87.5 92.1 41.8 73.1 33.5 35.9 48.7 58.4 50.8 55.5 56.7 72.8 56.0 65.6 72.5 64.7 68.1
Ours w SPL 97.0 78.8 90.4 90.5 94.0 77.7 88.1 93.5 50.1 80.5 36.2 38.2 48.3 59.8 57.7 58.1 60.5 74.7 57.3 66.6 74.2 66.6 69.8

Table 2. The impact of using Structured Pseudo-Labels (SPL) on performance across different object sizes.

SSSS: Pascal (1/115) SSSS:Cityscapes (1/64) CDSS: G→C
mIoU (↑) FID (↓) mIoU (↑) FID (↓) mIoU (↑) FID (↓)

Base (Unimatch/HRDA) 75.2 - 65.4 - 75.9 -
DatasetDM w/o FT 74.6 44.2 60.6 87.4 71.8 87.4

+ Labeled FT 75.4 34.1 62.3 49.1 72.2 73.1
+ Labeled and unlabeled FT 75.7 30.6 63.7 35.7 75.0 47.7

Ours 78.9 15.6 69.8 21.5 77.0 21.5

Table 3. Comparison with DatasetDM under the same fine-tuning
(FT) scope (denoising UNet only), using both labeled data and
reliable pseudo-labels (PLs). In the table below, our method out-
performs DatasetDM in both FID and mIoU.

(a) Image-level Class distribution of 64 labeled data (b) Image-level Class distribution of 2k synthetic data

Figure 2. Comparison of image-level label distributions for syn-
thetic and real images in semi-supervised cityscapes (64 labeled
data) task.

mance of semi-supervised learning continuously improves.
Once it reaches a certain threshold, further increases have a
diminishing impact on performance stability.
Iteration rounds. Fig. 4 shows that our method can be iter-
ated multiple rounds to enhance the quality of synthesis and
benefit the segmentation model. Although multiple rounds
yield marginal improvement, it significantly increases train-
ing time. We ultimately opted for a single-round iteration.

Figure 3. The impact of the number of synthesis images

Figure 4. The impact of iteration rounds for finetuning.

5. Appendix E More visualizations
Visualization of synthesize images only using pseudo-
text-prompts As shown in Fig. 5, the layout of synthesized
images is confusing because using category names as text
prompts does not include spatial relationships. This makes
it difficult to synthesize high-quality images on urban street
scenes with complex layouts.
Synthesize images using source-domain semantic mask
as conditions. Fig. 6 demonstrates that using semantic
masks from the source domain as spatial conditions can still
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Figure 5. Failure cases of synthetic images using only pseudo-
text-prompts. Images synthesized this way exhibit chaotic layouts
and noisy textures.

generate high-quality images. However, due to differences
in perspective, object resolution, and spatial layout between
the source and target domains, using these synthesized data
only brings about marginal improvements in target perfor-
mance. For example, data from the source domain GTA5,
generated using a synthetic engine, presents a wide field of
view, whereas the target domain Cityscapes, captured by in-
car cameras, exhibits a narrower field of view.

Figure 6. Synthesize images using source-domain semantic masks
in GTA → Cityscapes unspervised domain adaptation task. De-
spite its visual resemblance to the target domain, there is a signifi-
cant domain shift in spatial layout.

More visualization about filtering out distorted con-
nected regions Fig. 7 shows our method’s ability to remove
heavily distorted regions in synthesized images while pre-
serving some challenging recognition capabilities, thereby
aiding in enhancing the model’s performance.
More visualization of synthetic images Fig. 8 demon-
strates that our method can synthesize a wide variety of im-
ages for minority classes, as reflected in diverse layouts and
scene variations. This diversity is advantageous for improv-
ing the model’s generalization boundaries.
More indoor scene visualizations. Fig. 9 shows that our
method still performs well in indoor scenes.

6. Appendix F Limitations
Extra overhead. Since our method requires fine-tuning
Stable Diffusion and then generating new samples for
training, we admit that our method introduces extra over-
head but it can significantly improve the performance, e.g.,
+5% of mIoU on ADE20K (1/64), Cityscape(1/64), and
COCO(1/512). Commonly, our method requires twice the

(a). Synthetic images (b). Synthetic label (c). Model’s prediction (d). Filtered synthetic label 

Figure 7. Display of more synthetic images and its corresponding
semantic mask with 1024×512 resolution. The data is sampled
from semi-supervised cityscapes (64 labeled data) task.

train

bus

motorcycle
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truck

traffic light

wall

fence

Figure 8. Display of 512×512 resolution synthetic images used
for training, containing more minority categories. The data is sam-
pled from semi-supervised cityscapes (64 labeled data) task.

training time compared to the SSSS baselines but does not
affect the inference speed. Besides, we would like to clarify
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(e). Synthetic Image 2 (f). Synthetic Image 3

Figure 9. Indoor scenes on ADE20K.

(a). Structured pseudo label (b). Distorted synthetic images

Figure 10. Failure cases. Although the given structured pseudo-
labels are semantically correct, their corresponding synthetic im-
ages exhibit semantic distortions.

that the main goal of SSSS is to enhance the performance on
target data and few methods focus on the training cost in the
community. Considering the effectiveness of our method,
we thus think our extra training cost is acceptable for the
task of SSSS.
Semantically distorted synthetic images. Although our
results show that Pseudo-SD generates high-quality sam-
ples for most images, some low-quality generated images
still exist. As shown in Fig. 10, despite well-structured
pseudo-label masks, certain generated images remain par-
tially incomprehensible or perceptually unclear, posing po-
tential risks to SSSS and CDSS tasks. Further investigation
and mitigation of these issues will be the focus of our future
research.
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