
Tree-NeRV: Efficient Non-Uniform Sampling for Neural Video Representation
via Tree-Structured Feature Grids

Supplementary Material

A. Overview
In this supplementary document, we provide additional de-
tails to complement our main paper. First, we describe the
lower and upper bound query mechanism in Tree-NeRV
in Appendix B. Next, we present an in-depth discussion
and visualization of the balancing mechanism adopted in
Tree-NeRV in Appendix C. We then provide a preliminary
review of NeRV in Appendix D and detail the implementa-
tion of our experiments in Appendix E. Furthermore, we in-
clude additional experimental results to analyze our method
in Appendix F. Finally, we provide qualitative comparisons
in Appendix G.

B. Query Mechanism in Tree-NeRV
Tree-NeRV introduces a novel feature representation
paradigm by organizing and storing features within a Binary
Search Tree (BST), enabling efficient non-uniform sam-
pling and retrieval. In a balanced Tree-NeRV, the query
process follows a divide-and-conquer strategy, reducing the
search space by half at each step. At each node, the query
key is compared with the current node’s temporal key, and
based on the result, the search proceeds to either the left or
right subtree. Since an exact match is rare, the query typi-
cally continues until reaching a leaf node, which is the most
common case in Tree-NeRV. Consequently, the query time
complexity is determined by the height of the tree, yield-
ing O(log n) complexity. In contrast, LINKED-LIST-based
representations, where features are sequentially stored, re-
quire a linear scan to locate the nearest temporal keys. This
results in a worst-case query complexity of O(n), making
retrieval significantly slower for large video sequences. To
further optimize the search process, we introduce a set of in-
termediate variables that dynamically store and update the
lower and upper bounds during traversal. This ensures that
a single query efficiently retrieves both bounds. The query
process summarized in Algorithm 1.

C. Tree-NeRV’s balance mechanism
To ensure Tree-NeRV remains balanced and supports effi-
cient query operations, we implement an automatic rebal-
ancing algorithm inspired by the self-balancing mechanism
of AVL trees. To formally define balance, we first define the
height of each subtree T denoted as h(T ), and the height of
a subtree is the longest path from its root node to a leaf
node, where a leaf node is defined as a node with both left
and right subtrees empty, having a height of 0. The height

Algorithm 1 Temporal Embedding Query in Tree-NeRV

1: Input: Query time ti, subtree T
2: Output: Time embedding vi
3: Initialize traversal from the root node (k, v) of T
4: Set (kli, v

l
i)← None, (kui , v

u
i )← None ▷ Initialize

bounds
5: while T ̸= ∅ do
6: if ti = k then
7: return vi = v ▷ Exact match found
8: else if ti < k then
9: (kui , v

u
i )← (k, v) ▷ Update upper bound

10: T ← TL ▷ Traverse left subtree
11: else
12: (kli, v

l
i)← (k, v) ▷ Update lower bound

13: T ← TR ▷ Traverse right subtree
14: end if
15: end while
16: vi ← Interpolate(vli, vui , kli, kui , ti) ▷ Linear

interpolation
17: return vi

of a subtree T is computed recursively as:

h(T ) = 1 +max{h(TL), h(TR)} (10)

Beyond height, we define the balance factor β for each
subtree T as the difference between the height of its left and
right subtrees:

β = h(TL)− h(TR) (11)

To maintain Tree-NeRV’s balance, we enforce the AVL tree
constraint, which requires each β to satisfy:

−1 ≤ β ≤ 1 (12)

any subtree T with β exceeds this range, is considered un-
balanced, necessitating a rebalancing operation to restore its
efficiency.

During training, Tree-NeRV encounters different types
of imbalanced states. We categorize these scenarios and
apply appropriate rebalancing strategies to restore balance
efficiently, as summarized in Tab. 8.

To further illustrate these imbalance conditions, Fig. 8
provides a visual depiction of Tree-NeRV’s rotation-based
rebalancing operations. These scenarios are categorized
based on the balance factor β, of the affected node and its
child node. The corresponding rebalancing operations are



Table 8. Classification of imbalance cases in Tree-NeRV and their corresponding rebalancing operations. Here, ib denotes the imbalanced
node, and ibc denotes its child node.

Imbalance Node Child Node Rebalancing Operation

βib > 1 βibc ≥ 0 Right Rotation
βib > 1 βibc < 0 Left Rotation → Right Rotation
βib < −1 βibc ≤ 0 Left Rotation
βib < −1 βibc > 0 Right Rotation → Left Rotation

6

95

3

1

3

41

6

9

(a) Left-Left (LL) (b) Left-Right (LR) (c) Right-Right (RR)

𝛽𝛽 = 2 Right 
Rotate

𝛽𝛽 = 1 7

6

95

3

4

𝛽𝛽 = 2 Right 
Rotate

𝛽𝛽 = −1 3

Left 
Rotate

2

𝛽𝛽 = −2

𝛽𝛽 = −1
Left 
Rotate

(d) Right-Light (RL)

3

41

6

5

2

𝛽𝛽 = −2

𝛽𝛽 = 1
Left 
Rotate

Right 
Rotate

Figure 8. Right & Left rotation adopted in Tree-NeRV.

Conv

Pixel Shuffle

Conv

Activation

(b) E-NeRV Blocks

Conv

Pixel Shuffle

Activation

(a) NeRV Blocks

𝒉𝒉,𝒘𝒘,𝒅𝒅′𝑺𝑺𝟐𝟐 𝑺𝑺𝒉𝒉,𝑺𝑺𝒘𝒘,𝒅𝒅′ 𝑺𝑺𝒉𝒉,𝑺𝑺𝒘𝒘,𝑶𝑶 𝑺𝑺𝒉𝒉,𝑺𝑺𝒘𝒘,𝑶𝑶

𝒉𝒉,𝒘𝒘,𝒅𝒅

𝒉𝒉,𝒘𝒘,𝒅𝒅

𝒉𝒉,𝒘𝒘,𝑶𝑶𝑶𝑶𝟐𝟐 𝑺𝑺𝒉𝒉,𝑺𝑺𝒘𝒘,𝑶𝑶 𝑺𝑺𝒉𝒉,𝑺𝑺𝒘𝒘,𝑶𝑶

𝑺𝑺𝒉𝒉,𝑺𝑺𝒘𝒘,𝑶𝑶

𝑺𝑺𝒉𝒉,𝑺𝑺𝒘𝒘,𝑶𝑶

Figure 9. Comparision of NeRV and E-NeRV block.

applied as follows: a) Left-Left (LL) Imbalance: The bal-
ance factor of node 5 is β5 = 2, indicating an imbalance.
Its child node 3 has β3 = 1, leading to an LL imbalance.
A single right rotation at node 5 restores balance. b) Left-
Right (LR) Imbalance: Similar to case (a), β5 = 2, causing
an imbalance. However, its child node 3 now has β3 = −1,
forming an LR imbalance. To restore balance, we first apply
a left rotation at node 3, followed by a right rotation at node
5. c) Right-Right (RR) Imbalance: The balance factor of
node 4 is β4 = −2, marking it as unbalanced. Its child node
6 has β6 = −1, leading to an RR imbalance. A single left
rotation at node 4 restores balance. (d) Right-Left (RL)
Imbalance: Similar to case (c), β4 = −2, causing an imbal-
ance. However, its child node 6 now has β6 = 1, forming
an RL imbalance. To restore balance, we first apply a right
rotation at node 6, followed by a left rotation at node 4.

D. NeRV
Neural Representations for Videos (NeRV) [11] is an Im-
plicit Neural Representation (INR) framework designed for
efficient video modeling. Unlike conventional INR meth-

ods that map spatiotemporal coordinates to pixel values,
NeRV directly learns a frame-index-to-frame mapping, en-
abling fast and compact video representations. Given an
RGB video sequence V = {xt}T−1

t=0 , where each frame
xt ∈ R3×H×W , NeRV formulates its mapping as:

xt = f(γ(t)), (13)

where f : Rt → R3×H×W is the learnable function, and
γ(t) is an embedding function that encodes the frame in-
dex t into a high-dimensional space. The function f is
typically parameterized as a cascade of convolution-based
NeRV blocks, which progressively upsample and refine fea-
ture representations.

As illustrated in Fig. 9, each NeRV block consists of: 1)
A convolutional layer to extract and transform features. 2)
A pixel-shuffle upsampling operation [34] to increase spa-
tial resolution. 3) An activation function (e.g., ReLU [16],
GELU [17]) to introduce non-linearity. Given an input fea-
ture of shape h × w × d, NeRV aims to upsample it by a
factor of S. The standard NeRV pipeline follows:

conv3×3(d,OS2)→ pixel-shuffle(S). (14)

The number of trainable parameters in a single NeRV
block is 3× 3×O × d.

To reduce parameter redundancy while maintaining per-
formance, E-NeRV introduces an intermediate projection
dimension d′S2, modifying the block structure as:

conv3×3(d, d
′S2)→ pixel-shuffle(S)→ conv3×3(d

′, O).
(15)

The total parameter count in an E-NeRV block is given by:
3×3×d′S2×(d×S2+O). By selecting a smaller interme-
diate channel dimension d′, E-NeRV significantly reduces
parameters while preserving spatial reconstruction quality.

While E-NeRV achieves substantial parameter savings,
we observe that the expressiveness of NeRV blocks remains
positively correlated with their parameter count. Excessive
parameter reduction can degrade video reconstruction qual-
ity. To balance efficiency and performance, we adopt a hy-
brid design: 1) E-NeRV blocks are applied only in the first
NeRV block, which requires the largest upsampling factor
(e.g., 5× scaling) and has the highest intermediate chan-
nel dimension. 2) tandard NeRV blocks are retained for all



subsequent layers, preserving feature expressiveness while
maintaining computational efficiency.

E. Experimental Setup

E.1. Implementation Details

Baseline Implementation: For HNeRV [12], and FFN-
eRV [21], we conducted experiments using their pub-
licly available implementations. FFNeRV adopts a multi-
resolution feature grid, which we implemented following
the original paper, using resolutions of [64, 128, 256, 512].
We controlled the parameter budget by adjusting the feature
dimensions accordingly. For DS-NeRV [43], we developed
our own implementation based on the open-source code of
FFNeRV. Following the original work, we utilized varying
numbers of static codes (∼ 30–100) and dynamic codes
(∼ 150–400) to match their settings. Notably, both HNeRV
and DS-NeRV downscale video resolution to a fixed aspect
ratio of 1:2 (i.e., height:width). However, in our experi-
ments, we maintain the original 9:16 resolution for all video
frames. To ensure a fair comparison, we adjusted their fea-
ture sizes accordingly, aligning with other methods in our
evaluation.
Tree-NeRV Configuration: In our implementation, we ad-
justed the number of channels in the latent features and
NeRV blocks to control the model size, while keeping other
hyperparameters consistent with the settings reported in the
original papers.

For example, when processing a 1080× 1920× 3× 600
UVG [28] video sequence, we adopted a uniform sampling
rate of 0.1, resulting in 60 initial features. These features
were iteratively grown in four stages, with the top 10 GOPs
being inserted with new nodes during each stage. Each
feature code was represented as a 9 × 16 × 100 three-
dimensional vector. The NeRV blocks used stride steps of
5, 3, 2, 2, 2, and the minimum number of channels was set
to 72. Under this configuration, the total number of param-
eters amounted to approximately 3M. For the DAVIS [37]
dataset, which contains videos with fewer frames and higher
dynamic variations, we adjusted only the number of ini-
tial features to 10 and increased the feature dimension to
9 × 16 × 120. All other settings were kept consistent with
those used for the UVG dataset.

Video size resolution hs × ws × dims init feature topk Chmin strides
Beauty 3 1080× 1920 9× 16× 100 60 10 64 (5,3,2,2,2)
Bosph 3 1080× 1920 9× 16× 100 60 10 64 (5,3,2,2,2)
Honey 3 1080× 1920 9× 16× 100 60 10 64 (5,3,2,2,2)
Yacht 3 1080× 1920 9× 16× 100 60 10 64 (5,3,2,2,2)
Ready 3 1080× 1920 9× 16× 100 60 10 64 (5,3,2,2,2)
Jockey 3 1080× 1920 9× 16× 100 60 10 64 (5,3,2,2,2)
Shake 3 1080× 1920 9× 16× 100 30 20 64 (5,3,2,2,2)

Table 9. Architecture details of Tree-NeRV on UVG.

Video size resolution hs × ws × dims init feature topk Chmin strides
Blackswan 3 1080× 1920 9× 16× 120 10 10 72 (5,3,2,2,2)
Bmx-trees 3 1080× 1920 9× 16× 120 10 10 72 (5,3,2,2,2)

Boat 3 1080× 1920 9× 16× 120 10 10 72 (5,3,2,2,2)
Breakdance 3 1080× 1920 9× 16× 120 10 10 72 (5,3,2,2,2)

Camel 3 1080× 1920 9× 16× 120 10 10 72 (5,3,2,2,2)
Car-roundabout 3 1080× 1920 9× 16× 120 10 10 72 (5,3,2,2,2)

Car-shadow 3 1080× 1920 9× 16× 120 10 10 72 (5,3,2,2,2)
Cows 3 1080× 1920 9× 16× 120 10 10 72 (5,3,2,2,2)
Dance 3 1080× 1920 9× 16× 120 10 10 72 (5,3,2,2,2)
Dog 3 1080× 1920 9× 16× 120 10 10 72 (5,3,2,2,2)

Table 10. Architecture details of Tree-NeRV on Davis.

Topk 5 15 20 10
PSNR 33.21 33.30 33.32 33.36

Table 11. Ablation study for feature length on UVG. Ours sampled
160 feature points after training.

F. Additional Experiments

F.1. Topk Selection

To further investigate Tree-NeRV, we conducted an addi-
tional ablation study. First, we evaluated the effect of dif-
ferent Top-k values on Tree-NeRV’s sampling behavior and
compression performance. Specifically, we tested k values
of 5, 10, 15, and 20, analyzing Tree-NeRV’s reconstruction
results on the UVG dataset. As shown in Tab. 11, similar
compression performance was achieved across the different
k values. Additionally, in Fig. 10, we visualized the ac-
tual sampling outcomes of Tree-NeRV for each k setting,
observing a consistent sampling trend across the different
configurations.

F.2. Video Compression

Our compression pipeline follows a standard three-step pro-
cess: global parameter pruning, quantization, and entropy-
based encoding. Table 12 presents the impact of these com-
pression techniques on the final results. Moving forward,
we aim to integrate more advanced compression strategies
into NeRV-like approaches to further optimize efficiency.
Additionally, we plan to explore node pruning as a mecha-
nism for reducing video stream redundancy.

F.3. Perceptional Quality Comparison

In the field of compression, a widely recognized trade-
off exists between ‘rate-distortion-realism’ [7]. Given that
Tree-NeRV is fully trained using the Mean Squared Error
(MSE) loss, we aim to evaluate its performance not only in
terms of distortion but also in perceptual realism. To this
end, we adopt the Learned Perceptual Image Patch Similar-
ity (LPIPS) [47] metric to assess the perceptual quality of
Tree-NeRV on the UVG and Davis dataset. The results are
shown in Tab. 13.



k = 5 k = 15 k = 20k = 10

Figure 10. Tree-NeRV sampling results under different setting of topk, on Jockey (top), Beauty (bottom).

UVG Beauty Bospho Honey Jockey Ready Shake Yacht

N/A 33.54/0.920 35.63/0.965 39.88/0.990 32.74/0.912 26.86/0.861 35.28/0.953 29.74/0.908
8-bit Quant 33.48/0.919 35.55/0.965 39.86/0.989 32.71/0.912 26.79/0.860 35.27/0.953 29.68/0.908
8-bit Quant + Pruning (10%) 33.13/0.916 35.27/0.964 39.15/0.989 32.08/0.911 26.42/0.859 35.04/0.953 29.44/0.908

Table 12. Compression ablations on UVG in PSNR/SSIM.

Video Bosph Honey Shake b-dance b-swan c-shadow Avg.
HNerv [12] 0.335±0.009 0.199±0.004 0.242±0.018 0.228±0.007 0.367±0.006 0.334±0.012 0.284±0.009
Ours 0.283±0.012 0.194±0.005 0.241±0.018 0.168±0.006 0.291±0.008 0.263±0.012 0.240±0.01

Table 13. Additional LPIPS (↓) results with both method set to 3M parameters.

G. Additional Qualitative Results
G.1. Visualization of Video Representation
We present additional qualitative comparisons of video rep-
resentation on the UVG and DAVIS datasets. Tree-NeRV
consistently demonstrates superior reconstruction quality.
For example, in Fig. 11, the first row highlights the cir-
cular rings on the boat, while the second row shows de-
tailed high-frequency variations in the background. The
third row captures splashing water, and the fourth row re-
stores the numbers on the scoreboard. In Fig. 13, Tree-
NeRV outperforms other methods in reconstructing graf-
fiti on the wall (first row), background architecture (second
row), and the detailed textures on the camel (third row). As
shown in Fig. 12, these improvements are attributed to the
tree-structured feature representation and our adaptive sam-
pling strategy, which effectively captures the temporal re-
dundancy in video streams.

G.2. Visualization of Video Interpolation
Additional visual comparisons of video interpolation results
are available in Fig. 14. Tree-NeRV successfully preserves
intricate details in previously unseen frames, demonstrating
its superior interpolation capabilities.



Ground Truth Ours DS-NeRV HNeRV

Figure 11. Additional video reconstruction results on UVG.

Beauty Bosphorus Honeybee

Ready Shake Yacht

Figure 12. Additional Tree-NeRV sampling results on UVG.



Ground Truth Ours DS-NeRV FFNeRV

Figure 13. Additional video reconstruction results on DAVIS.

Ground Truth Ours DS-NeRV HNeRV

Figure 14. Additional video interpolation results on UVG.


	Introduction
	Related Work
	Method
	Overview
	Tree Structured Feature Grid
	NeRV Blocks
	Training Tree-NeRV

	Experiment
	Setup
	Video Representation
	Sampling Results
	Video Encoding and Decoding
	Video Interpolation
	Video Compression
	Ablation Studies

	Conclusion
	Acknowledgement
	Overview
	Query Mechanism in Tree-NeRV
	Tree-NeRV's balance mechanism
	NeRV
	Experimental Setup
	Implementation Details

	Additional Experiments
	Topk Selection
	Video Compression
	Perceptional Quality Comparison

	Additional Qualitative Results
	Visualization of Video Representation
	Visualization of Video Interpolation


