
A. Outline
We begin by presenting an overview of our Appendix.
• Section B: Framework Datails. We provide a detailed

explanation on the connection between our UV-CoT and
DPO.

• Section C: Implement Details. We describe the specifics
of our dataset, and evaluation methodology.

• Section D: Limitations. We analysis the constraints and
challenges of our approach.

• Section E: Potential negative societal impacts. We dis-
cuss possible negative consequences and ethical consid-
erations associated with our work.

B. Connection between UV-CoT and DPO
B.1. Loss Function Formulation
To better captures the impact of key regions, we introduce a
preference-weighted optimization approach. The loss func-
tion for UV-CoT is defined as follows:
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where ⇡✓ is the target policy model being optimized, ⇡ref

is the frozen reference model, constraining deviations from
the initial policy, g : R ! R is a monotonically increasing
function mapping preference scores sw and sl (for winning
and losing responses yw and yl) into the logit space, � is a
temperature parameter, D represents the dataset distribution
over input-output pairs (x, yw, yl).

This formulation extends the DPO framework by incor-
porating preference differences g(sw)�g(sl), which reflect
the utility of key regions identified by UV-CoT.

B.2. DPO Background and Reparameterization
DPO reformulates reward model training as a policy opti-
mization problem by reparameterizing the reward function
from Proximal Policy Optimization (PPO) [34]:

r(x, y) = � log
⇡✓(y | x)
⇡ref(y | x) + � logZ(x), (7)

where Z(x) is the partition function. Substituting this into
the Bradley-Terry preference model [6] yields:
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where � is the sigmoid function. Maximizing the log-
likelihood of this preference model leads to the naive DPO
loss:
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B.3. Derivation with Gumbel Distribution
To incorporate preference-weighted optimization, we de-
fine �r = g(sw)� g(sl) and introduce Gumbel-distributed
random variables Rw ⇠ Gumbel(r(x, yw), 1) and Rl ⇠
Gumbel(r(x, yl), 1). The probability that the winning re-
sponse is preferred, adjusted by the preference gap, is:

P (Rw �Rl > �r) = � (r(x, yw)� r(x, yl)��r)
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This result leverages the Gumbel-max trick [25], with a sim-
ilar derivation found in ODTO [1].

B.4. Proof of Gumbel-Based Preference
We first prove the foundational probability P (Rw � Rl >
0) = �(�r̂✓ ), where �r̂✓ = r✓(x, yw)� r✓(x, yl).

Proof: Define the random variable I =
argmaxl,w{Rl, Rw}. The goal is to show:

P (I = w) =
exp(r̂✓(x, yw))

exp(r̂✓(x, yw)) + exp(r̂✓(x, yl))
. (11)

For notation simplicity, let r̂w = r̂✓(x, yw), r̂l = r̂✓(x, yl),
and gr̂w ⇠ Gumbel(r̂w, 1). Then:
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where the integral accounts for the Gumbel CDF. Let Z =
exp(r̂w) + exp(r̂l). The expression simplifies to:

P (I = w) =
exp(r̂w)

Z
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proving Equation (11). Extending this to the preference gap
�r, we derive:
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Table 6. The details of the datasets, which spans five distinct domains and includes various source datasets.

Domain Source Dataset Size Dataset Description

Text/Doc

TextVQA 16k Images with text
DocVQA 35k Doc images

DUDE 15k Doc images
SROIE 4k Invoice images

Chart InfographicsVQA 15k Infographic images

General VQA Visual7W 43k Images
Flickr30k 136k Images

Relation Reasoning VSR 3k Images
GQA 88k Images

High-Resolution V⇤ Bench 238 Images

where �r̂✓ = r✓(x, yw) � r✓(x, yl). This completes the
derivation of the UV-CoT loss in Equation (6).

C. Implement Details
C.1. Datasets
To generate diverse and comprehensive image-level Chain-
of-Thought (CoT) data for training Multimodal Large Lan-
guage Models (MLLMs), we select nine source datasets
spanning four distinct domains: Text/Doc, General Visual
Question Answering (VQA), Charts, and Relation Reason-
ing. These domains are chosen to ensure a broad repre-
sentation of visual reasoning tasks, enabling the model to
develop robust CoT capabilities across varied contexts.

Before performing preference optimization, we conduct
Supervised Fine-Tuning (SFT) using 10% of the labeled
Visual-CoT dataset, which corresponds to approximately
25k samples, as detailed in Tab. 6. This subset is cho-
sen to balance computational efficiency with sufficient ex-
posure to diverse reasoning patterns, resulting in a model
we denote as UV-CoT (10%). Following SFT, we per-
form preference optimization using a total of 249k pref-
erence data points, curated from the same nine datasets.
The preference data is generated by ranking model outputs
for each dataset, ensuring that the distribution across do-
mains mirrors that of Visual-CoT [35]. Specifically, for
each dataset, we maintain roughly the same proportion of
preference pairs as in Visual-CoT (e.g., Text/Doc datasets
contribute approximately 50% of the data, consistent with
their representation in our dataset). This approach ensures
that UV-CoT benefits from a balanced and comprehensive
preference optimization process, enhancing its ability to pri-
oritize key regions in visual reasoning tasks.

As shown in Tab. 6, we provide a detailed introduc-
tion to the datasets we used. For the Text/Doc do-
main, we include four datasets focusing on text recogni-

tion and comprehension in diverse document and image
formats: DocVQA [26], TextVQA [36], DUDE [39], and
SROIE [12]. These datasets provide rich text-based reason-
ing scenarios, such as extracting information from invoices
(SROIE) or answering questions about document content
(DocVQA), which are crucial for generating CoT data that
involves step-by-step text interpretation.

In the General VQA domain, we select Flickr30k [31]
and Visual7W [55]. These datasets are well-suited for gen-
eral visual question answering, as they contain diverse im-
ages paired with questions that require understanding both
visual content and textual prompts, facilitating the creation
of CoT data for general reasoning tasks.

For the Charts domain, we use the InfographicsVQA
dataset [27], which consists of high-resolution infograph-
ics. This dataset is particularly advantageous for training
MLLMs to localize and interpret specific regions in charts,
enabling the generation of CoT data that involves reasoning
about data visualization elements such as legends, labels,
and trends.

In the Relation Reasoning domain, we select VSR [20]
and GQA [13]. These datasets are rich in spatial relational
information among objects in images, making them ideal
for constructing CoT data that focus on reasoning about ob-
ject relationships, such as identifying relative positions or
dependencies in a scene.

For high-resolution image reasoning, we use V⇤ Bench
[41], which comprises 238 images from the SA-1B
dataset [16] with an average resolution of 2246⇥1582.

C.2. Evaluation

We utilize GPT-4o to assess the performance of our model
due to its superior reasoning capabilities and adopt an eval-
uation prompt to. The prompt template is like:



Evaluating Prompt Template

You are a helpful and precise assistant for check-
ing the quality of the answer, you need to give a
score to the model’s answer by referring to the
standard answer, based on the given question. The
full score is 1 point and the minimum score is 0
points. Please output the score in the form ‘score:
<score >’. The evaluation criteria require that the
closer the model’s answer is to the standard an-
swer, the higher the score.

The meaning score, ranging from 0 to 1, reflects the
semantic relevance of the model’s responses to the given
prompts.

D. Limitations
While our UV-CoT model demonstrates high performance
across most evaluated datasets, it encounters challenges in
accurately identifying anchor boxes on certain datasets, no-
tably DocVQA [26] and InfographicsVQA [27]. These dif-
ficulties may arise due to the complex layouts, variable text
densities, and noisy annotations prevalent in these datasets,
which complicate the localization of relevant regions. In
contrast, the ground truth (GT) boxes achieve exceptional
performance on these datasets, suggesting that our model
has significant untapped potential. Future research could
explore advanced anchor box detection algorithms, such
as incorporating adaptive thresholding or multi-scale fea-
ture extraction, to address these limitations and enhance the
model’s robustness across diverse visual domains.

E. Potential negative societal impacts
The potential negative societal impacts of our work align
with those of other MLLMs and LLMs. While the devel-
opment of UV-CoT and MLLMs advances AI capabilities,
it also introduces several risks. These include heightened
privacy concerns, the reinforcement of existing biases, the
spread of misinformation, job displacement due to automa-
tion, and ethical challenges related to accountability, trans-
parency, and informed consent. Addressing these issues re-
quires responsible deployment, continuous monitoring, and
the implementation of safeguards to mitigate unintended
consequences.
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