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1. Implementation Details

1.1. Video Diffusion Model Details

We trained an RGB-DN video diffusion model using the
CogVideoX [13] architecture. On the input side, our depth
normal projector and RGB projector shared the same archi-
tecture. On the output side, our Conv3DNet consisted of
three layers, while the MLP had two layers, both with a di-
mension of 1024. The model outputs videos with 49 frames,
utilizing gradient checkpointing to optimize memory usage.
We set a global batch size of 16 and used bf16 precision to
accelerate. For sampling, we employed the DDPM sched-
uler across 50 steps and set a classifier-free guidance scale
of 7.5. The training spanned 40,000 iterations with an initial
learning rate of 1× 10−4, a gradient clipping of 1.0, and a
1,000-step warmup. The optimizer used was Adam with ϵ set
to 1× 10−15, and an exponential moving average (EMA [8])
decay of 0.99 was applied to stabilize training.

1.2. 4D Scene Generation

The parameters for the loss term in Eq.12 are set differently
for the RT-1 [3], Bridge [12] and RLBench [6] datasets, as
shown in the table below. It is worth noting that the selection
of λ varies for different scenarios. In practice, achieving the
best performance requires tuning these parameters.

Dataset λd λb λg1 λg2

RT-1, Bridge 20 200 20 20
RLBench 20 200 2 2

Table 1. Loss Term Parameters for RT-1 and RLBench Datasets

In Figure 1, we present a visualization of the 3D robotic
scene reconstruction optimized using our proposed method
in the BridgeV2 [12] dataset. After estimating the depth and
normal with the estimator, we refine the outputs to recon-
struct the scene accurately. The figure includes untextured
rendering and texture-rendered views, where the wall tex-
tures are significantly enhanced due to normal optimization.
The side perspective view shows the improved shape and ge-
ometry reconstruction. Notably, the wall and table surfaces
are well-aligned, appearing perpendicular to each other, fur-
ther validating the effectiveness of our optimization process
in capturing accurate spatial relationships.
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Figure 1. Visualization of the optimized 3D robotic scene recon-
struction. The untextured renderings show enhanced detail (green)
and improved surface smoothness (red). The side perspective view
highlights accurate shape and geometry optimization, including the
perpendicular alignment of the wall and table (red).

1.3. Implementation Details for Robotics Planning
For the RLBench training, we adopted the same architecture
and methods as our video diffusion model, with the primary
difference being that we used 13 frames and fine-tuned the
model. For the action prediction stage, we first filter out
the background and floor from the data, focusing only on
the points of the table and the objects manipulated by the
robotic arm, and then sample 8192 points from the filtered
point cloud. In our inverse dynamic model, the PointNet
extracts features from this point cloud, concatenated with the
instruction’s language embedding, and passed into a 4-layer
MLP, finally outputting the 7DoF actions. To augment the
data and better adapt to the output of video diffusion models,
we add significant Gaussian noise (with a relative magnitude
of 20%) to both the image and point cloud coordinates.

2. More Generation Results
2.1. Data Annotation
In this section, we first compare our data generation method
with 3D-VLA [14]. They use ZoeDepth [1] for depth map
estimation and directly map them into 3D space. The com-
parison results, shown in Figure 2, evaluate the quality of
point cloud generation for both methods, with cubes replac-
ing vertices for rendering. Our generated data demonstrates
higher realism, while 3D-VLA exhibits noticeable shape
distortion. Figure 12 showcases some of the RGB, depth,
and normal images from the datasets we used, along with
the corresponding natural language instructions.

2.2. 4D Video Generation
Our world model demonstrates strong generalization capabil-
ities in complex, unseen scenes and with novel objects. Qual-
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Figure 2. Comparison of point cloud generation quality between
our method and 3D-VLA

itative results are illustrated in Figure 7 and Figure 8. The
input images were sourced from various domains, including
the π0 [2] website’s table bussing section, the RT-2 [4] teaser,
photography collections from Unsplash, and films such as
Sherlock. We designed challenging prompts that require
an understanding of articulated objects and compositional
reasoning, highlighting the full potential of our model. We
further present in-domain video generation results on the
RT1, Bridge, and RLBench datasets, as shown in Figure 9,
Figure 10, and Figure 11, respectively. Additional videos
are provided in the TesserAct website gallery for extended
analysis and qualitative evaluation.

To assess our model’s zero-shot video generation perfor-
mance, we conducted a comparative evaluation against the
Video Prediction Policy [5] (VPP) using both GPT-4o eval-
uation and SSIM metrics. The evaluation dataset includes
in-the-wild images and previously unseen, new collected
real-world data. The GPT prompt is provided in Figure 3.
Quantitative results are summarized in Table 2, where our
model outperforms VPP across all metrics.

Datasets In-the-Wild New Collected

Models GPT Eval. ↑ GPT Eval. ↑ SSIM ↑
VPP 5.10 6.51 0.740
TesserAct 7.70 7.75 0.746

Table 2. Zero-shot video generation comparison between VPP and
our model (TesserAct), evaluated using GPT-4o and SSIM. The two
evaluation settings include in-the-wild samples and newly collected
real-world data.

3. More Robot Manipulation Results
3.1. Real World Experiments
To validate the real-world applicability of our 4D embodied
world model, we conducted experiments on three manipu-

LLM Evaluation Prompt

You are a video quality assessment expert. I will pro-
vide you with a set of frames generated by a model
(and a set of original video frames), with the text de-
scription used during generation. Please determine
whether the generated results accurately reproduce
the described content and whether there are any dis-
tortions, misalignments, or inconsistencies. Please
evaluate the results based on the following criteria:
1. Content Accuracy: Do the generated frames

accurately represent the content described in the
prompt?

2. Temporal Consistency: Are the video frames
temporally coherent?

3. Perceptual Quality: Are there noticeable blurs,
artifacts, or structural abnormalities?

4. Consistency with GT: If the ground-truth video
is provided, are the generated frames similar to
the GT frames in terms of content and motion?

Please provide a brief evaluation comment and a
score (0–10) based on the above criteria.

Figure 3. Evaluation prompt used for GPT-4o-based assessment
of generated videos. The prompt instructs the model to rate video
quality based on content accuracy, temporal consistency, perceptual
quality, and-when available-consistency with ground truth. For
in-the-wild samples where GT is not available, only the prompt and
generated frames are provided.

lation tasks using a robotic platform. A total of 100 demon-
stration samples were collected, covering 2 tasks 1) cloth
(deformable objects) moving and folding and 2) picking up
a cup of a specified color. For each task, the policy model
was retrained on the collected data and evaluated over 20
independent trials. Notably, the cloth folding task represents
a zero-shot video generation challenge for TesserAct, as the
Bridge dataset [12] from Open-X collection [11] does not
contain raw cloth-folding samples. Figure 4 shows an exam-
ple prediction generated by our model and robot execution
sequence for the cloth manipulation task. The results of the
real-world experiments are summarized in Table 3.

pick cup move cloth fold cloth

Success Rate 16 / 20 10 / 20 4 / 20

Table 3. Success rates of the policies in real-world experiments.

Our experimental environment consists of a workstation,
a robotic arm, and one external camera. The specific config-
uration is as follows: FR3 Robotic Arm: The FR3 (Franka
Research 3) robotic arm is a high-precision 7-Degree-of-
Freedom collaborative robot arm equipped with flexible
movement capabilities and high repeatability. This robotic

https://unsplash.com/
https://tesseractworld.github.io/
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Figure 4. Example from our model for the real-world cloth folding
task.

arm is responsible for executing the predicted actions from
our inverse dynamics models. Workstation: The work-
station is a desk that serves as the fixed base for securely
mounting the robotic arm and provides a stable platform for
object placement and experimental tasks. Camera System:
A single Intel Realsense D435i camera is mounted on a rigid
pole attached to the workstation, positioned to cover the en-
tire workspace. It captures real-time RGB and depth images
of the robotic arm’s movements and the operational activities
on the desk.

3.2. Explicit Action Planning
One potential application of our generated mesh is to extract
action trajectories directly. As illustrated in Figure 5, we
track the robotic arm in the video to capture its motion path.
This trajectory is subsequently lifted into 3D space, enabling
the reconstruction of the robot arm’s action trajectory. The
red line in the visualization represents the captured action
trajectory.
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Figure 5. Tracking of robotic arm trajectories on the Bridge dataset

4. Inference Time and Memory Usage
There exists an inherent trade-off between achieving strong
generalization capabilities and minimizing time and mem-

ory consumption. Our method, while more computation-
ally intensive than Video Prediction Policy [5] (VPP), pro-
vides significantly better video generalization performance.
Compared to OpenVLA [7], our system is faster and more
memory-efficient. We show time and memory usage in the
Table 4 below. Looking ahead, we aim to further accelerate
inference through Latent Consistency Models [10], as well
as caching strategies like TeaCache [9] and EasyCache [15].

Diffusion 3D Recon. PointNet VPP OpenVLA

Time / Memory 12.4s / 20G 3.2s / 0.4G 0.5s / 2G 8s / 5.4G 18s / 25G

Table 4. Inference time and peak memory usage for each stage of
our TesserAct pipeline compared to VPP and OpenVLA.

5. Limitations
While our RGB-DN representation of a 4D world model is
cheap and easy to predict, it only captures a single view of the
world. To construct a more complete 4D world model, it may
be interesting in the future to have a generative model that
generates multiple RGB-DN views of the world, which can
then be integrated to form a more complete 4D world model.
Despite the strengths of our approach, the generated videos
still exhibit limitations, as shown in the examples in Figure 6.
These include visual hallucinations such as object disappear-
ance, incomplete or incorrect functional understanding, and
constrained generalization to novel or unseen objects and
environments.

Limited generalization to unseen objects

Object disappearance

Figure 6. Failure cases of our method
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Figure 7. Out-of-domain 4D generation results



Pick up the cup - Google Robot
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Figure 8. Out-of-domain 4D generation results
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Figure 9. In-domain RGB-DN video generation results on Bridge dataset
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Close middle drawer – Google Robot

Place green Jalapeno chip bag into top drawer – Google Robot
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Figure 10. In-domain RGB-DN video generation results on RT1 dataset
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Open wine bottle - Franka

Set up chess - Franka

Take off weighing scales - Franka
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Figure 11. In-domain RGB-DN video generation results on RLBench dataset



Figure 12. Some sample frames extracted from the datasets Bridge [12] and RT-1 [3].
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