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A. Data Preparation Details

Our pipeline processes raw 3D meshes into signed dis-
tance function (SDF) training samples through geometric
normalization and multi-scale sampling. During train-
ing, each input mesh undergoes coordinate normalization
to align all axes within the [0,1]³ domain. We validate
geometric integrity using a hybrid watertightness check:
First, we detect non-manifold edges through topological
analysis of the face adjacency graph. Meshes failing this
check are processed through Poisson surface reconstruc-
tion to generate watertight counterparts.

Query points are sampled through a multi-scale strat-
egy: (1) global volume sampling across the normal-
ized [0,1]³ domain generates global context points, (2)
adaptive bounding box sampling operates within a
1.3× expanded object-aligned bounding box to con-
centrate queries in surface-proximal regions, and (3)
surface-constrained sampling employs barycentric co-
ordinate interpolation on mesh faces, prioritizing high-
curvature regions through triangle area-weighted selec-
tion to densely encode the SDF zero-crossing manifold.
The signed distance value for a query point x is:

SDF(x) = ∥x− ps∥2 · sgn
(
n⊤

s (x− ps)
)

(1)

where ps is the nearest surface point to x (retrieved via
KD-tree acceleration), ∥x−ps∥2 is the absolute distance
from x to the surface, ns denotes the outward-oriented
unit normal at ps, and sgn(·) enforces the geometric sign
convention:

sgn(v) =

{
−1 if v < 0 (inside)
+1 otherwise (outside).

(2)

The sign assignment follows a consistent logic: points
located inside the shape reside in the negative half-space
defined by the surface normal, satisfying n⊤

s (x− ps) <
0, while those in the positive half-space are classified
as outside. This approach ensures alignment with the
assumption that the mesh is watertight. Furthermore, it
is well-suited for point cloud representations that include
internal structures, as the explicit separation of distance
and sign enables robust handling of enclosed cavities and
nested surfaces, ensuring accurate SDF computation even
in complex, multi-layered geometries.

B. Evaluation Metrics for Anomaly Repair
To quantitatively evaluate 3D anomaly repair, we use
Chamfer Distance and Earth Mover’s Distance, which
assess geometric accuracy and structural consistency.
Chamfer Distance (CD). Chamfer Distance measures
the discrepancy between two point sets by computing the
sum of squared distances from each point to its nearest
neighbor in the other set. Given a reconstructed shape S1

and the ground truth S2, it is defined as:

dCD(S1, S2) =
∑
x∈S1

min
y∈S2

∥x−y∥22+
∑
y∈S2

min
x∈S1

∥x−y∥22.

(3)
Here, x ∈ S1 and y ∈ S2 are points in the recon-

structed and ground truth point sets, respectively, and
∥ · ∥2 denotes the Euclidean distance. CD efficiently
captures point-wise accuracy, making it suitable for eval-
uating local geometric deviations. However, it does not
impose a structured mapping between the distributions of
S1 and S2, potentially leading to misalignment in cases
where shapes exhibit global structural shifts.
Earth Mover’s Distance (EMD). Earth Mover’s Dis-
tance, also known as the Wasserstein distance, measures
the minimum transport cost required to transform one
point set into another. Unlike CD, which only considers
nearest neighbors, EMD enforces a one-to-one correspon-
dence by finding an optimal bijection ϕ : S1 → S2:

dEMD(S1, S2) = min
ϕ:S1→S2

∑
x∈S1

∥x− ϕ(x)∥2. (4)

In this formulation, ϕ(x) represents the optimal match
for each x in the ground truth set S2, ensuring that mass
transport is minimized. EMD provides a more global
assessment of structural consistency, penalizing uneven
distributions that Chamfer Distance might overlook. Due
to its higher computational complexity, it is typically
computed on a subset of points.

C. More Qualitative Results
Due to page limit, only a limited number of qualitative
results are presented in the main text. To offer a more
comprehensive and intuitive visualization of our results,
we provide additional qualitative results in Figure A, B.
Specifically, the first column displays the original surface,
the second column shows the anomaly map, and the third
column presents the repaired surface.
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Figure A. Qualitative anomaly localization results on Anomaly-ShapeNet.
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Figure B. Qualitative anomaly localization results on Real3D-AD.



Method cap0 cap3 helmet3 cup0 bowl4 vase3 headset1 eraser0 vase8 cap4 vase2 vase4 helmet0 bucket1 vase7 helmet2 cap5 shelf0 bowl5 bowl3 helmet1

BTF(FPFH) 0.618 0.522 0.444 0.586 0.609 0.699 0.490 0.719 0.668 0.520 0.546 0.510 0.571 0.633 0.518 0.542 0.586 0.609 0.699 0.490 0.719

BTF(FPFH) with PAM 0.741 0.740 0.567 0.881 0.644 0.433 0.680 0.810 0.558 0.533 0.652 0.609 0.635 0.444 0.629 0.684 0.653 0.530 0.632 0.786 0.648

Patchcore(FPFH) 0.580 0.453 0.404 0.600 0.494 0.449 0.637 0.657 0.662 0.757 0.721 0.506 0.546 0.551 0.693 0.425 0.790 0.494 0.558 0.537 0.484

Patchcore(FPFH) with PAM 0.996 0.811 0.624 0.914 0.863 0.679 0.781 1.000 0.852 0.744 1.000 0.848 0.432 0.603 0.881 0.788 0.800 0.786 0.828 0.644 0.729
Patchcore(PointMAE) 0.589 0.476 0.424 0.610 0.501 0.460 0.627 0.677 0.663 0.727 0.741 0.516 0.556 0.561 0.650 0.447 0.538 0.523 0.593 0.579 0.552

Patchcore(PointMAE) with PAM 0.619 0.660 0.455 0.605 0.385 0.664 0.462 0.790 0.694 0.407 0.614 0.542 0.441 0.832 0.600 0.609 0.744 0.580 0.554 0.470 0.338

PASDF(Ours) 0.852 0.649 0.846 0.971 0.933 0.806 0.795 0.952 0.924 0.646 1.000 0.912 0.812 0.775 1.000 0.765 0.853 0.713 0.912 1.000 0.938

Method bottle3 vase0 bottle0 tap1 bowl0 bucket0 vase5 vase1 vase9 ashtray0 bottle1 tap0 phone cup1 bowl1 headset0 bag0 bowl2 jar0 Mean

BTF(FPFH) 0.322 0.342 0.344 0.546 0.509 0.401 0.409 0.219 0.268 0.420 0.546 0.560 0.671 0.610 0.668 0.520 0.546 0.510 0.424 0.528
BTF(FPFH) with PAM 0.822 0.779 0.705 0.533 0.833 0.724 0.495 0.457 0.612 0.686 0.523 0.661 0.676 0.552 0.552 0.693 0.714 0.559 0.295 0.579
Patchcore(FPFH) 0.572 0.455 0.604 0.766 0.504 0.469 0.417 0.423 0.660 0.587 0.667 0.753 0.388 0.586 0.639 0.583 0.571 0.615 0.472 0.568
Patchcore(FPFH) with PAM 0.990 0.925 0.962 0.507 0.974 0.981 0.752 0.767 0.882 0.919 0.951 0.691 1.000 0.771 0.819 0.942 0.710 0.407 1.000 0.814
Patchcore(PointMAE) 0.650 0.447 0.513 0.538 0.523 0.593 0.579 0.552 0.629 0.591 0.601 0.458 0.488 0.556 0.629 0.591 0.601 0.458 0.483 0.562
Patchcore(PointMAE) with PAM 0.517 0.887 0.652 0.537 0.641 0.559 0.657 0.443 0.564 0.781 0.779 0.736 0.710 0.481 0.522 0.707 0.538 0.563 0.738 0.627

PASDF(Ours) 1.000 1.000 1.000 0.793 1.000 0.968 1.000 0.929 0.836 1.000 1.000 0.882 1.000 0.857 0.948 1.000 0.995 1.000 1.000 0.900

Table A. O-AUROC score (↑) on Anomaly-ShapeNet dataset. The best and second-best results are marked in bold and underlined.

Method cap0 cap3 helmet3 cup0 bowl4 vase3 headset1 eraser0 vase8 cap4 vase2 vase4 helmet0 bucket1 vase7 helmet2 cap5 shelf0 bowl5 bowl3 helmet1

BTF(FPFH) 0.730 0.658 0.724 0.790 0.679 0.699 0.591 0.719 0.662 0.524 0.646 0.710 0.575 0.633 0.540 0.643 0.586 0.619 0.699 0.690 0.749
BTF(FPFH) with PAM 0.864 0.699 0.608 0.892 0.611 0.568 0.505 0.894 0.586 0.689 0.872 0.650 0.731 0.648 0.682 0.524 0.803 0.769 0.715 0.807 0.533

Patchcore(FPFH) 0.472 0.653 0.737 0.655 0.720 0.430 0.464 0.810 0.575 0.595 0.721 0.505 0.548 0.571 0.693 0.455 0.795 0.613 0.358 0.327 0.489

Patchcore(FPFH) with PAM 0.973 0.921 0.856 0.976 0.860 0.752 0.850 0.946 0.856 0.966 0.978 0.964 0.806 0.783 0.958 0.818 0.958 0.883 0.774 0.972 0.732
Patchcore(PointMAE) 0.544 0.488 0.615 0.510 0.501 0.465 0.423 0.378 0.364 0.725 0.742 0.523 0.580 0.754 0.651 0.651 0.545 0.543 0.562 0.581 0.562

Patchcore(PointMAE) with PAM 0.739 0.752 0.660 0.663 0.436 0.601 0.605 0.626 0.680 0.702 0.691 0.748 0.569 0.880 0.568 0.642 0.802 0.687 0.528 0.586 0.572

PASDF(Ours) 0.948 0.861 0.958 0.948 0.865 0.868 0.891 0.945 0.909 0.894 0.956 0.899 0.816 0.824 0.959 0.809 0.920 0.865 0.909 0.939 0.646

Method bottle3 vase0 bottle0 tap1 bowl0 bucket0 vase5 vase1 vase9 ashtray0 bottle1 tap0 phone cup1 bowl1 headset0 bag0 bowl2 jar0 Mean

BTF(FPFH) 0.622 0.642 0.641 0.596 0.710 0.401 0.429 0.619 0.568 0.624 0.549 0.568 0.675 0.619 0.768 0.620 0.746 0.518 0.427 0.628
BTF(FPFH) with PAM 0.809 0.837 0.880 0.674 0.769 0.772 0.567 0.652 0.695 0.693 0.696 0.647 0.869 0.687 0.548 0.717 0.841 0.621 0.852 0.683
Patchcore(FPFH) 0.512 0.655 0.654 0.768 0.524 0.459 0.447 0.453 0.663 0.597 0.687 0.733 0.488 0.596 0.531 0.583 0.574 0.625 0.478 0.580
Patchcore(FPFH) with PAM 0.889 0.929 0.985 0.716 0.981 0.842 0.713 0.757 0.905 0.774 0.841 0.827 0.943 0.758 0.732 0.807 0.895 0.814 0.985 0.867
Patchcore(PointMAE) 0.653 0.677 0.553 0.541 0.527 0.586 0.572 0.551 0.423 0.495 0.606 0.858 0.886 0.856 0.524 0.575 0.674 0.515 0.487 0.577
Patchcore(PointMAE) with PAM 0.883 0.835 0.691 0.681 0.656 0.574 0.602 0.675 0.719 0.765 0.735 0.687 0.792 0.569 0.566 0.646 0.593 0.525 0.774 0.681

PASDF(Ours) 0.948 0.944 0.951 0.902 0.963 0.875 0.915 0.797 0.863 0.919 0.926 0.884 0.951 0.884 0.900 0.863 0.958 0.816 0.959 0.897

Table B. P-AUROC score (↑) on Anomaly-ShapeNet dataset. The best and second-best results are marked in bold and underlined.

Method O-AUROC ↑ P-AUROC ↑
w/o RANSAC 0.550 0.570
w/o ICP 0.712 0.667
w/o IO 0.781 0.738
w/o PE 0.750 0.706

PASDF (Full) 0.802 0.745

Table C. Ablation study on Real3D-AD. IO represents iterative
optimization. PE stands for positional encoding.

D. Detailed Results of Ablation Studies

In the main text (Table 5), we present the overall results
of the PAM ablation study, demonstrating its effective-
ness in improving anomaly detection performance across
different baseline models on Anomaly-ShapeNet. To
provide a more detailed analysis, we report the per-class
quantitative results in Table A, B. These results offer a
finer-grained evaluation of PAM’s impact on individual
object categories, further validating its robustness and
generalization ability.

In the main text (Table 6), we provide ablation exper-
iments for PAM on Anomaly-Shapenet dataset. Addi-
tionally, in Table C we supplement the ablation experi-
ments on Real3D-AD. PAM consistently improves the
baselines, and its components are crucial for PASDF on
Real3D-AD, demonstrating generalizability.

E. Comparative discussion with PO3AD
Recent work PO3AD [1] detect anomalies through point
offset predictions similar to our use of Signed Distance
Fields (SDFs). However, unlike our method, PO3AD re-
lies on synthetic pseudo-anomalies and does not address
pose alignment or anomaly repair.
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