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Abstract

Reconstructing atmospheric surface CO2 is crucial for un-
derstanding climate dynamics and informing global mitiga-
tion strategies. Traditional inversion models achieve pre-
cise global CO2 reconstruction but rely heavily on uncer-
tain prior estimates of fluxes and emissions. Inspired by
recent advances in data-driven weather forecasting, we ex-
plore whether data-driven models can reduce reliance on
these priors. However, CO2 reconstruction presents unique
challenges, including complex spatio-temporal dynamics,
periodic patterns and sparse observations. We propose CO2-
Net, a data-driven model that addresses these challenges
without requiring extensive prior data. We formulate CO2

reconstruction as solving a constrained advection-diffusion
equation and derive three key components: physics-informed
spatio-temporal factorization for capturing complex trans-
port dynamics, wind-based embeddings for modeling pe-
riodic variations and a semi-supervised loss for integrat-
ing sparse CO2 observations with dense meteorological
data. CO2-Net is designed in three sizes—small (S), base
(B) and large (L)—to balance performance and efficiency.
On CMIP6 reanalysis data, CO2-Net (S) and (L) reduce
RMSE by 11% and 71%, respectively, when compared to the
best data-driven baseline. On real observations, CO2-Net
(L) achieves RMSE comparable to inversion models. The
ablation study shows that the effectiveness of wind-based
embedding and semi-supervised loss stems from their com-
patibility with our spatio-temporal factorization. Code is
available at https://github.com/Leamonz/CORE.

1. Introduction
Atmospheric surface CO2 is a primary driver of climate

change, contributing significantly to global warming through

*Equal contribution.
†Corresponding author.

Figure 1. CO2 concentrations (µmol/mol): (a) Ground-truth; (b)
Sparse direct observations; (c) Output of ViT; (d) Output of our
CO2-Net (L). Our CO2-Net (L) outperforms ViT in ground-based
CO2 reconstruction, and well captures CO2 dynamics.

the greenhouse effect. Comprehensive surface CO2 data is
critical for understanding the carbon cycle, improving cli-
mate predictions and supporting mitigation strategies such as
carbon capture, emissions reduction and renewable energy,
aligned with international climate goals like the Paris Agree-
ment. However, historical surface CO2 observations are lim-
ited due to sparse monitoring networks like the NOAA Fed-
erated Aerosol Network [2]. While recent satellite data and
related reconstruction methods provide detailed CO2 records
for the past decade, reconstructing atmospheric surface CO2

before the satellite era relies on limited station data. Inverse
modeling approaches, including Bayesian synthesis [33],
variational methods [21] and Kalman filters [32], address
the sparsity by combining sparse CO2 observations with
auxiliary meteorological variables (e.g., temperature, wind,
surface pressure) within physical transport models. While
accurate, these methods are constrained by their reliance on
uncertain prior estimates (e.g., fluxes and emissions) and
are computationally expensive, limiting their scalability for
real-time applications.

Recently, deep neural networks have made significant
advancements in climate modeling. Models such as Four-
castNet [31], ClimaX[29], ClimODE [42], Pangu [3] and Au-
rora [5] achieve error rates comparable to traditional medium-
range weather prediction systems while offering substantial
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improvements in computational efficiency. Despite these
advances, data-driven approaches for reconstructing global
surface CO2 concentrations remain relatively underexplored.
This gap raises a critical question: Can data-driven methods
reconstruct global surface CO2 concentrations with error
rates comparable to inversion models, within the same order
of magnitude, without relying on extensive prior data?

This reconstruction problem can be framed as an image
inpainting task, where missing data needs to be filled. How-
ever, it introduces three unique challenges that are not typi-
cally encountered in conventional inpainting tasks. First, cap-
turing the spatio-temporal dynamics of CO2 concentration is
inherently difficult. While spatio-temporal factorization tech-
niques have been explored in video understanding [19, 43], it
remains unclear how to effectively adapt them to accurately
model atmospheric dynamics. Second, atmospheric patterns
exhibit strong temporal periodicity, including seasonal (e.g.,
summer-winter) and diurnal (day-night) cycles, as well as
spatial periodicity driven by phenomena like trade winds.
Prior work [22, 42] incorporated spatial and temporal em-
beddings to model these periodic signals. However, how
these embeddings improve the model’s ability to capture
atmospheric dynamics remains unclear. Third, CO2 obser-
vations are sparse (Figure 1(b)), with limited spatial cover-
age (covering 0.7% of global surface) and a relatively short
time span (collected after 2000). Although self-supervised
training methods have shown promise in addressing spar-
sity in computer vision [13, 41], their application to CO2

reconstruction remains unclear. The key challenge lies in
identifying appropriate hidden representations and selecting
input variables that adhere to physical principles to design
an effective self-supervised reconstruction loss.

1.1. Our Contribution

In this paper, we propose CO2-Net, a physics-informed
spatio-temporal model designed specifically for CO2 recon-
struction with three key components.

CO2-Net employs a spatio-temporal factorization in-
spired by the linear superposition of PDE solutions. We
frame the reconstruction problem as a constrained advection-
diffusion equation, decomposing it into a time-invariant par-
ticular solution and a time-varying homogeneous solution.
Using this decomposition, we apply a spatial expert to model
the particular solution, capturing spatial distribution of CO2,
and a temporal expert to model the homogeneous solution,
capturing the temporal dynamics of CO2 and its interactions
with other variables. This design enables CO2-Net to capture
complex spatio-temporal dynamics.

CO2-Net is equipped with wind-flow based spatio-
temporal embeddings designed to capture periodic patterns
in atmospheric dynamics. We theoretically prove that the ho-
mogeneous solution can be uniquely represented as a series
of spatio-temporal basis functions. These functions guide

the design of periodic embeddings, enabling the model to
effectively represent periodic variations.

CO2-Net incorporates a semi-supervised loss to address
the challenge of sparse CO2 observations while ensuring
physically grounded reconstruction. The novel aspect lies in
identifying the appropriate hidden representation to recon-
struct the relevant input features, which enables the design
of a self-supervised loss. We prove that the wind field can be
exactly recovered from the homogeneous solution. Based on
this, we leverage the hidden representations of the temporal
expert to reconstruct the wind field, ensuring that the model
outputs adhere to physical principles and effectively mitigate
the sparsity issue in the CO2 observation.

We develop CO2-Net in three sizes, ranging from 38M
to 247M, to balance performance and efficiency. Exten-
sive experiments on reanalysis data show that CO2-Net (S)
achieves lower RMSE than all baselines, while CO2-Net (L)
further reduces it significantly, with reductions of 11% and
71%, respectively, compared to the best data-driven base-
line, Vision Transformer (ViT), as shown in Figure 1(c) and
(d). On real observation data, CO2-Net (L) achieves an
RMSE comparable to inversion models. The ablation study
shows that the effectiveness of wind-based embedding and
semi-supervised loss stems from their compatibility with
our spatio-temporal factorization, highlighting the crucial
interplay between model architecture, embedding design and
self-supervised task formulation in CO2 reconstruction.

2. Preliminary
Notations. Let S2 denote the unit sphere in R3, pa-

rameterized with the latitude-longitude grid (θ, ϕ) ∈ Ω =
[−π

2 ,
π
2 ]× [−π, π]. For a time-dependent function φ(θ, ϕ, t),

we write φ̇ = ∂φ
∂t . The symbol “·” denotes the standard inner

product on R3. The spherical gradient ∇ on S2 is given in
(θ, ϕ)-coordinates by ∇φ = ∂φ

∂θ êθ +
1

cos θ
∂φ
∂ϕ êϕ, where êθ

and êϕ are the unit tangent vectors in the θ- and ϕ-directions,
respectively. The divergence on S2 is denoted by ∇·, and
the spherical Laplacian is denoted by ∇2.

Atmospheric Data. Reconstructing CO2 concentrations
requires integrating sparse CO2 observations with auxiliary
data, such as temperature, humidity, and pressure, which are
densely sampled via satellites and sensor networks. While
auxiliary variables provide near-complete spatio-temporal
coverage, CO2 data remain sparse and unevenly distributed,
collected primarily from ground-based stations [46]. Prior
studies [6, 20, 49, 50] demonstrate that leveraging the dense
observation of auxiliary variables and the shared spatio-
temporal dynamics between these variables and CO2 en-
hances reconstruction precision. Building on these insights,
we assume full observations of the wind field w and aux-
iliary variables Φ1, . . . ,ΦK over the spatio-temporal grid
Ω × [0, T ], while CO2 data are limited to specific ground-
based locations, denoted by Z ⊂ Ω.



Atmospheric Advection-Diffusion Dynamics describe
the spatiotemporal transport and diffusion of CO2 con-
centration, φ(θ, ϕ, t), and K auxiliary variables, Φ =
(Φ1, . . . ,ΦK), driven by the wind field w(θ, ϕ, t). These
processes are governed by the advection-diffusion equation,
capturing the interactions of advection, diffusion, and ex-
ternal sources. The dynamics are represented by the linear
differential operator:

LC [φ] =
∂φ

∂t
+ (w · ∇)φ− C∇2φ,

where the diffusion coefficientC varies dynamically in space
and time. The governing equations for CO2 and auxiliary
variables are expressed as: LD[φ] = s,LDk

[Φk] = sk, k =
1, . . . ,K, where D and Dk are the respective diffusion coef-
ficients for φ and Φk. The terms s(θ, ϕ, t) and sk(θ, ϕ, t) de-
note external influences, such as radiation or chemical trans-
formations. Notably, all diffusion coefficients and source
terms exhibit dynamic variability in both space and time.

Problem Formulation. The goal is to reconstruct global
CO2 concentrations from sparse observations by solving the
following constrained partial differential equation (PDE):

LD[φ] = s, subject to φ
∣∣
Z×[0,T ]

= f
∣∣
Z×[0,T ]

, (1)

where f denotes the observed CO2 concentrations and
f
∣∣
Z×[0,T ]

denotes its restriction to the subset Z × [0, T ].
To address the difficulty of solving this PDE, we reformulate
it as an optimization problem to minimize the mean squared
error between observed and predicted CO2 concentrations:

min
F

Lsupv.(F ) ≜ ∥φ− F [w,Φ, f ]∥22, (2)

where the functional norm ∥ · ∥2 denotes the L2 norm over
Ω× [0, T ]. Here, F [w,Φ, f ] is a reconstruction model map-
ping the wind field w, auxiliary variables Φ, and partial
CO2 observations f to an approximation of the full CO2

concentration φ.

3. Our Approach: CO2-Net
3.1. Physics-based Spatiotemporal Factorization

To design an appropriate spatio-temporal factorization
for CO2 reconstruction, we analyze the solution of the con-
strained PDE in Eq. (1) over a short time interval [τ, τ +∆t].
The following proposition establishes that the general solu-
tion comprises two components: a time-invariant particular
solution and a time-varying homogeneous solution.

Proposition 1 (Linear Superposition of Solutions in PDE).
Let φpart be the particular solution of the equation, satisfying
LD[φpart] = s. Let φhomo be the homogeneous solution,
satisfying LD[φhomo] = 0 under the constraint φhomo =
f −φpart on Z × [0, T ]. Then, the general solution to Eq. (1)

is φgeneral = φhomo+φpart. Moreover, if the wind field, source
and diffusion coefficient are constant over the interval [τ, τ +
∆t], the particular solution φpart becomes time-invariant,
depending only on the initial time τ .

Remark: The proof in Appendix A follows directly from
the linearity of the advection-diffusion operator LC and the
principle of linear superposition for PDE solutions.

Inspired by this, we introduce a spatial expert to model
the particular solution and a temporal expert to model the
homogeneous solution, with an MLP fusing the two experts
to produce the final prediction. While CAST [19], a model
designed for action recognition in videos, employs a similar
spatio-temporal factorization, our approach is derived from
underlying physical principles.

Spatial Expert. The spatial expert models the time-
invariant particular solution φpart by capturing spatial cor-
relations within individual frames of the input sequence.
As illustrated in Figure 2, it consists of a spatial tok-
enizer and a L-layer ViT. The input is a tensor of shape
B × (K + 1 + E) ×∆t ×H ×W , where B is the batch
size, K + 1 + E is the number of channels (including CO2,
K auxiliary variables and E additional spatio-temporal em-
beddings), ∆t is the number of input frames, and H ×W
denote the spatial dimensions. The spatial expert processes
even frames of the input sequence, mixing them across the
sequence to discard inter-frame features. This ensures a fo-
cus solely on spatial correlations within individual frames.
The spatial tokenizer divides each frame into N = HW

pq
non-overlapping patches of size p× q, flattening each patch
into tokens of dimension D, resulting in a tensor of shape
(B · ∆t

2 ) × N ×D. The L-layer ViT then processes these
tokens to learn intra-frame spatial correlations while main-
taining the tensor shape. The spatial expert outputs hspatial, a
hidden representation encoding spatial dependencies.

Temporal Expert. The temporal expert models the time-
varying homogeneous solution φhomo by capturing inter-
frame dynamics in the input sequence. It shares the same
input tensor as the spatial expert and comprises a temporal
tokenizer and a L-layer ViT. Unlike the spatial expert, it
tokenizes the sequence into ∆t

2 ·N non-overlapping tubelets
of size 2 × p × q without subsampling or rearrangement,
preserving inter-frame relationships. These tubelets are pro-
jected into tokens of dimension D, resulting in a tensor of
shape B × (∆t

2 · N) × D. The tokens are then processed
by the L-layer ViT to model temporal correlations and inter-
frame dynamics. The final output is a hidden representation,
htemporal, which encodes the temporal dependencies.

Output Fusion. The spatial and temporal expert outputs,
hspatial and htemporal, are fused via element-wise addition:
hfusion = hspatial + htemporal. This fused representation is pro-
cessed by a three-layer MLP with hidden dimensions of 768,
and the final layer maps the output to the target dimension
H ×W , producing the prediction.



Figure 2. Overview of CO2-Net. CO2-Net integrates a spatial expert and a temporal expert, each consists of L layer ViT blocks. The two
experts interact via the layer-wise B-CAST module, strengthening spatio-temporal understanding. Hidden representations from the two
experts are fused through a three-layer MLP to generate the final prediction.

3.2. Wind-Flow based Spatio-Temporal Embedding
In this subsection, we design spatio-temporal embeddings

grounded in the physical dynamics of the advection-diffusion
equation. We prove that the homogeneous solution of the
constrained equation is unique and explicitly represented
as wave components in spatial (latitude and longitude) and
temporal dimensions. Under a zonal flow model, we derive
these components analytically, capturing periodicity and
directional atmospheric CO2 dynamics. These insights guide
the design of embeddings that incorporate periodicity and
transport dynamics for modeling atmospheric processes.

We formalize these ideas in the following theorem, which
establishes the existence, uniqueness, and wave-based rep-
resentation of the homogeneous solution to the constrained
advection-diffusion equation.

Theorem 2 (Existence and Uniqueness of the Real Ana-
lytical Solution). Let Z ⊂ S2 be a non-empty open subset.
Let source s and coefficient ν be two real analytic functions
defined on S2 × [0, T ]. Let f(·, t) be real analytic on Z for
each t. The PDE Lν [φ] = s, subject to φ = f on Z × {0},
admits a unique analytical solution,

φ(θ, ϕ, t) =
∑
n≥1

∑
|m|≤n

An,m(t)eimϕPm
n (cos θ), (3)

where An,m(t) are time-dependent coefficients and Pm
n are

associated Legendre functions. Furthermore, assuming a
constant zonal wind flow w = (0, U), a time-invariant
source term s, and a constant diffusion coefficient ν, the
expansion coefficients An,m(t) take the form An,m(t) =
Bn,me

−νn(n+1)t+imUt +Cn,m, where Bn,m and Cn,m are
time-independent constants determined by the initial condi-
tion and the source term.

Remark: The proof, shown in Appendix B, establishes
the existence and uniqueness of the solution using the
Cauchy–Kovalevskaya theorem. However, a direct appli-
cation is not possible, since the initial condition is given
only on an open subset Z , instead of S2. Therefore, we

first use the identity theorem for real-analytic functions to
show that the initial condition is uniquely determined and
real-analytic, allowing us to apply the Cauchy–Kovalevskaya
theorem rigorously.

By this theorem, the unique solution is a power series
of the basis functions 1, eiϕ, eiθ, eiUt, and eiV t, capturing
periodic patterns in time and space. Using Euler’s formula,
we define the temporal embedding as

ψ(t) = {cos(2πUt), sin(2πUt), cos(2πV t), sin(2πV t), 1},

where U and V denote the zonal (east-west) and meridional
(north-south) wind speeds, respectively. The spatial terms
eiϕ and eiθ can be expressed using trigonometric functions,

ψ(θ, ϕ) =

{
cos

2πθ

N
, sin

2πθ

N
, 1

}
×
{
cos

2πϕ

M
, sin

2πϕ

M
, 1

}
,

where N and M denote the grid resolutions for latitude
and longitude. Combining the temporal terms and spa-
tial terms leads to the joint spatio-temporal embedding:
ψ(θ, ϕ, t) = ψ(θ, ϕ)× ψ(t). Following ClimODE [42], we
adopt the same spatial embeddings but incorporate wind-flow
dynamics into the temporal embeddings, replacing its daily
and yearly approach for improved CO2 reconstruction. In
Appendix D, we present an additional theorem demonstrat-
ing that, with joint spatio-temporal embedding, the solution
in Eq. (3) can be implemented as a neural network with an
architecture closely resembling CO2-Net.

3.3. Layer-wise Spatio-Temporal Connection
Prior research [19, 37] has shown that exchanging hidden

representations between spatial and temporal experts in early
layers significantly improves model performance compared
to simple summation at the output layer. Lee et al. [19] in-
troduced the Bottleneck Cross-Attention in Space and Time
(B-CAST) module, which facilitates interaction between spa-
tial and temporal models through early-layer representations,
enabling more balanced spatio-temporal learning. Similarly,
Skean et al. [37] demonstrated that embeddings from inter-
mediate layers are more effective for downstream tasks than



those from the final layer. Building on these findings, we
adopt a layer-wise connection module based on B-CAST to
efficiently exchange representations between the spatial and
temporal experts, enhancing spatio-temporal understanding.

3.4. Semi-supervised Physics-informed Loss
Traditional supervised learning minimizes the loss Lsupv.

to fit reconstructed outputs to ground truth labels. While
effective in vision tasks with complete inputs, such as clas-
sification [28, 51] and recognition [45, 47], this approach
is inadequate for CO2 reconstruction due to observation
sparsity, which can impede training. Inspired by the ef-
fectiveness of self-supervised learning in mitigating data
sparsity [7, 13, 41], we leverage hidden representations from
intermediate layers for self-supervised reconstruction.

A key challenge in self-supervised reconstruction is se-
lecting appropriate hidden representations and defining suit-
able reconstruction objectives [8, 15]. This challenge inten-
sifies with multiple input variables and the involvement of
spatiotemporal experts, making it unclear which variables to
reconstruct and which representations to use. To address this,
we propose a theorem demonstrating that the wind field can
be precisely reconstructed from the temporal expert when it
corresponds to the homogeneous solution, providing insights
into the design of self-supervised objectives.

Theorem 3. Let φ : S2 × [0, T ] → R be a smooth function
with non-vanishing gradient and satisfy ∂φ

∂t + (w · ∇)φ =
D∇2φ,where w is a non-zero time-dependent smooth vector
field on the sphere S2. Then w is uniquely determined by φ.

Remark: The proof in Appendix C uses the fact that
if v satisfies (v · ∇)φ = 0 in a domain where ∇φ is non-
vanishing, then v = 0. Hence, if the homogeneous solution
φ has a non-vanishing gradient in a domain, this theorem
guarantees that the wind field w is uniquely determined.

Based on this result, we define the wind field reconstruc-
tion loss as a self-supervised objective. We implement it
using a linear perceptron applied to the output representation
of the temporal expert, htemporal. The loss is given by

Lwind = min
W

∥w −W · htemporal[w,Φ, f ]∥22,

where w is the input wind field and W is the weight matrix
of the reconstruction module. The norm ∥ · ∥2 denotes the
L2 norm over Ω× [0, T ]. The final semi-supervised loss is
defined as the weighted sum of Lwind and the supervised loss
Lsupv. defined in Eq. (2), i.e., Lsemi-supv. = Lsupv. + λ · Lwind,
where λ balances the two terms. This loss ensures alignment
with supervised labels while enforcing physical constraints
from wind-driven dynamics.

4. Experiment
In this section, we conduct experiments to address the

following research questions:

Table 1. Overview of datasets.

Dataset
Auxiliary Variables CO2 Data

µmol/molPS HUSS TAS UAS VAS GPH ORO
(Pa) (%) (K) (m/s) (m/s) (m) (m)

CarbonTracker(CT) ✓ ✓ ✓ ✓ ✓ ✓ ✓ Spot Records
CMIP6 ✓ ✓ ✓ ✓ ✓ × × Monthly Avg.

Table 2. Overview of dataset divisions by year.

Dataset Train Validation Test

CarbonTracker(CT) 2002-2018 2001, 2019 2000, 2020
CMIP6 1865-1999 1860-1864, 1850-1859,

2000-2004 2005-2014

RQ1: How does CO2-Net compare in (1) global CO2

reconstruction accuracy against baselines and (2) spot recon-
struction accuracy against inversion models?

RQ2: Does CO2-Net perform better in reconstructing
both long-term global dynamics and short-term local events?

RQ3: How do spatio-temporal factorization, wind-based
embedding, layer-wise connections and the semi-supervised
loss function individually enhance performance?

4.1. Experimental Setups
In this subsection, we introduce the experimental setups,

including the data, baselines, evaluation metrics and imple-
mentation details. We provide details in Appendix E.

Reanalysis Data. We use two datasets, CarbonTracker
(CT) [16] and CMIP6 [11], both with a spatial resolution of
2◦ × 3◦. We use the CT† released in 2022, and for CMIP6,
we use data from historical experiments conducted by the
CanESM5† model. CT provides high temporal resolution
data at 3-hour intervals, while CMIP6 offers coarser, monthly
averaged data. CT includes seven surface variables (Table 1),
such as surface air pressure (PS), specific humidity (HUSS),
air temperature (TAS), and wind components (UAS, VAS),
while CMIP6 excludes geopotential height (GPH) and orog-
raphy (ORO). Dataset splits are shown in Table 2, with val-
idation and testing sets covering the first and last years to
evaluate long-term CO2 trends.

Real Observation Data. We utilize real atmospheric
CO2 observation data from GLOBALVIEWplus (GV+) [36],
provided by NOAA. GV+ comprises global CO2 measure-
ments collected from a network of surface spots worldwide.
It includes 3-hour interval CO2 measurements from 96 sur-
face spots. We randomly select 72 spots and employ obser-
vations from these spots for training, while data from the
remaining 24 spots are used to assess the capability of the
model to reconstruct actual CO2 concentration and compare
its performance with inversion models.

Baselines. We evaluate three types of baselines: inver-
sion, numerical and data-driven models. Inversion models
include 4D-Variation [16] and COLA [23]. Numerical mod-
els include Kriging interpolation [30] with spherical and

†https://gml.noaa.gov/ccgg/carbontracker/
†https://climate-scenarios.canada.ca/?page=cmip6-scenarios



Table 3. RMSE(↓, in µmol/mol) and ACC (↑) comparison of
different models across datasets and regions. ∗ indicates spatio-
temporal reconstruction models, while others are static reconstruc-
tion models. AS-EU represents Asia-Europe. Details are presented
in Appendix F.3.

Dataset Methods Sizes (M) Global Ocean AS-EU

RMSE ACC RMSE ACC RMSE ACC

CMIP6

Senseiver 0.11 36.47±6.81 0.59±0.16 31.94 0.79 40.52 0.43
SwinLSTM∗ 3.3 27.42±0.09 0.52±0.01 28.41 0.52 27.70 0.51
CycleGAN 28 51.48±0.36 0.12±0.04 53.34 0.12 52.01 0.11

ViT 76 18.18±1.01 0.49±0.02 18.86 0.49 18.38 0.49
CO2-Net∗ (S) 38 16.18±1.19 0.73±0.07 22.48 0.72 16.27 0.79
CO2-Net∗ (B) 95 9.91±0.93 0.98±0.03 10.27 0.99 9.91 0.98
CO2-Net∗ (L) 247 5.31±0.49 0.99±0.00 5.49 0.99 5.36 0.97

CT

Spherical – 7.41±0.40 0.12±0.01 5.55 0.14 9.80 0.21
Exponential – 7.40±0.37 0.11±0.01 5.56 0.13 9.83 0.20
Senseiver 0.11 6.39±0.45 0.43±0.10 4.74 0.28 9.70 0.50

SwinLSTM∗ 3.3 5.31±0.01 0.61±0.00 2.90 0.45 6.33 0.65
CycleGAN 28 4.70±0.01 0.71±0.00 1.57 0.88 8.39 0.73

ViT 76 5.42±0.21 0.50±0.04 2.27 0.72 9.43 0.63
CO2-Net∗ (S) 38 3.59±0.06 0.72±0.01 1.32 0.84 6.08 0.72
CO2-Net∗ (B) 95 3.41±0.04 0.77±0.01 1.03 0.90 5.58 0.77
CO2-Net∗ (L) 247 3.36±0.04 0.85±0.00 1.09 0.94 5.39 0.85

Table 4. RMSE(↓) in µmol/mol comparison on real observations.

Methods 4D-Var. COLA Sphe. Expo. Sens. ViT Cycle. Swin. CO2-Net (L)

RMSE 7.80 7.94 8.46 8.40 8.75 9.10 9.45 8.34 7.81

exponential variogram models. Data-driven baselines in-
clude Vision Transformer (ViT) [1], SwinLSTM [40], Cy-
cleGAN [34], and the Implicit Neural Representation (INR)
model Senseiver [35].

Metrics. We use latitude-weighted Root Mean Squared
Error (RMSE) with unit µmol/mol, and Anomaly Corre-
lation Coefficient (ACC) to evaluate model performance
as in ClimODE [42]. Latitude-weighted RMSE measures
reconstruction accuracy while accounting for Earth’s curva-
ture, whereas ACC evaluates degree of consistency between
model reconstruction and groud-truth with respect to their
anomaly patterns. Lower RMSE and higher ACC indicate
better performance.

Implementation Details. CO2-Net is implemented in
PyTorch, based on the CAST codebase [19], with all parame-
ters trained from scratch. The model inputs include spot CO2

data, auxiliary variables and wind-based embeddings. Both
spatial and temporal experts incorporate a L-layer ViT as
backbone. We implement CO2-Net in three sizes: small (S),
base (B) and large (L), with L set to 1, 4, 12, respectively.
A three-layer MLP with a hidden dimension of 768 serves
as the output head. We use AdamW optimizer [24] (mo-
mentum betas 0.9 and 0.999) and adopt cosine annealing for
learning rate scheduling. We identify an optimal combina-
tion of learning rate and weight decay through grid search
within the sets {5e− 5, 1e− 4, 3e− 4, 5e− 4, 8e− 4} and
{1e− 4, 5e− 4, 8e− 4, 1e− 3}, respectively. We find that
the best learning rate and weight decay are 5e−4 and 8e−4.
The model is trained for 250 epochs by default. Experiments
are conducted on two NVIDIA RTX 6000 Ada GPUs with a

Figure 3. Ground-truth and model reconstructed results of CO2

concentration (µmol/mol) on CarbonTracker in 2000 and 2020.

batch size of 32 per GPU.

4.2. Global CO2 Reconstruction Results (RQ1)
We compare the global and real observation reconstruc-

tion performance of CO2-Net with baseline methods, as
summarized in Table 3 and Table 4.

Obs 1: On both reanalysis datasets, CO2-Net outper-
forms all baselines in global CO2 reconstruction, achiev-
ing the lowest RMSE and highest ACC (Table 3). We
observe that even the CO2-Net (S) surpasses all baselines,
while CO2-Net (L) further reduces RMSE to 5.31 µmol/mol
on CMIP6, representing a 71% decrease compared to the
best baseline. Computational costs, including time per epoch
and VRAM usage per iteration, are provided in Appendix F.1.
Compared to the baselines, CO2-Net (S) achieves a lower
RMSE while maintaining comparable computational effi-
ciency. Larger CO2-Net sizes improve performance, high-
lighting the effectiveness and scalability of our architecture.

Furthermore, the RMSE reduction is more significant on
CMIP6 compared to CT. We hypothesize that this differ-
ence is due to CMIP6’s longer time span of 165 years and
coarser temporal resolution with monthly averages, resulting
in greater data fluctuations. Additionally, our model achieves
the lowest RMSE for Asia-Europe region and the Ocean, yet
a notable disparity exists between these areas. We attribute
this disparity to the relatively low spatial variation of CO2

over oceans, whereas industrial emissions over land increase
regional deviations.

Obs 2: On real observation data, CO2-Net achieves
RMSE comparable to inversion models and outperforms
all data-driven baselines (Table 4). On the GLOBALVIEW-
plus dataset, CO2-Net (L) achieves a reconstruction RMSE
of 7.81 µmol/mol, on par with the inversion model 4D-Var
(7.80 µmol/mol). In comparison, data-driven baselines like
ViT and CycleGAN exhibit RMSEs 16.7% and 21% higher



Figure 4. Ground-truth and reconstructed results of CO2 concentration in local regions where wildfires or forest carbon absorption appears.

Table 5. Ablation study (RMSE (↓) in µmol/mol |ACC (↑)). (a) Impact of the physics-informed spatio-temporal factorization and
layer-wise connections; (b) Impact of the wind-flow based spatio-temporal embedding; (c) Impact of the semi-supervised loss function.

(a) S-T Factorization and Connection.
(Settings: w/ wind-based emb., w/o semi-sup. loss)

Dataset CT CMIP6
spatial only 3.51 |0.84 14.28 |0.96
temporal only 3.51 |0.85 16.63 |0.99
S-T (w/o layer con.) 3.45 |0.85 13.01 |1.00
S-T (w/ layer con.) 3.43 |0.84 10.83 |0.98

(b) Wind-Flow based Embedding.
(Settings: CMIP6 dataset, w/o semi-sup. loss)

Embedding Wind ClimODE None
Cycle-GAN 28.43 |0.92 29.27 |0.85 28.36 |0.74
SwinLSTM 27.80 |0.50 27.97 |0.40 27.42 |0.52
ViT 21.51 |0.43 22.16 |0.50 18.18 |0.49
CO2-Net (L) 10.83 |0.98 27.06 |0.78 23.40 |0.98

(c) Semi-supervised Loss
(Settings: CMIP6 dataset, w/ wind-based emb.)

Semi-sup. loss w/ w/o
Cycle-GAN 28.45 |0.94 28.43 |0.92
SwinLSTM 28.22 |0.48 27.80 |0.50
ViT 19.78 |0.54 21.51 |0.43
CO2-Net (L) 5.31 |0.99 10.83 |0.98

than CO2-Net (L), respectively. Additional results of CO2-
Net (S) and (B) are provided in Appendix F.3.

4.3. Reconstructing Long-Term Global Dynamics
and Short-Term Local Events (RQ2)

We evaluate CO2-Net in reconstructing long-term global
dynamics and short-term local events, comparing its perfor-
mance with ViT.

Obs3: CO2-Net (L) reconstructs long-term global
warming trends more precisely, capturing peak and bot-
tom values accurately (Figure 3). Global warming, driven
by rising CO2 levels, is evident in the increasing CO2 con-
centrations from 2000 to 2020. Both models capture this
trend, but CO2-Net (L) achieves more precise reconstruction.
On the CT dataset, it closely matches peak ground-truth
values in East Asia and Central Africa (January 2000, July
2020), where ViT underestimates them. It also better re-
constructs low values in South America (January 2000) and
North America (July 2020) than ViT. Additional results of
CO2-Net (S) and (B) are provided in Appendix F.3.

Obs4: CO2-Net (L) outperforms baseline models in
tracking rapid CO2 concentration increases from local
wildfires and decreases from carbon absorption events
(Figure 4). For example, during the Amazon wildfire in
August 2019, CO2-Net (L) accurately tracks the sharp rise
in CO2 concentration from 420 µmol/mol to 440 µmol/mol
over five days, while ViT fails to capture the trend and under-
estimates the values. Similarly, during the Siberian carbon
absorption event in June 2020, CO2-Net closely follows
the rapid decline in CO2 concentration, while ViT shows a
gentler slope with larger deviations. All three variants of
CO2-Net accurately reflect short-term changes, with CO2-
Net (S) and CO2-Net (B) showing greater deviations from

the ground truth compared to CO2-Net (L).

4.4. Ablation: Factorization, Embedding and Loss
Function (RQ3)

Now we analyze the contribution of each key component
to performance gains, based on CO2-Net (L).

Obs5 (Factorization): The spatial and temporal ex-
perts outperform all baselines individually, their fusion
improves results, and layer-wise connections provide fur-
ther enhancement (Table 5a). On CMIP6, the spatial and
temporal experts alone achieve RMSEs of 14.28 and 16.63
µmol/mol, respectively, demonstrating their effectiveness.
Simple fusion of their hidden representations reduces the
RMSE to 13.01 µmol/mol, while adding layer-wise connec-
tions further reduces it to 10.83 µmol/mol. For fair com-
parison, the semi-supervised loss is excluded, as it requires
knowledge of the homogeneous solution and is not applica-
ble to single-expert settings. A similar trend is observed on
CT, although the improvement is less pronounced.

Obs6 (Embedding): Wind-based embeddings enhance
the performance of CO2-Net (L) but show limited or neg-
ative effectiveness in baseline models (Table 5b). We com-
pare the proposed wind-based embedding with the ClimODE
embedding and observe that wind-based embedding sig-
nificantly strengthens CO2-Net (L), achieving an RMSE
of 10.83 µmol/mol compared to 27.06 µmol/mol with
ClimODE embedding and 23.40 µmol/mol without embed-
ding. However, our embedding negatively impacts baseline
models, underscoring the need for careful embedding de-
sign. In contrast, our model benefits from the embedding,
as the unique PDE solution can be expressed as a combina-
tion of these embeddings and a network similar to CO2-Net
(i.e., Theorem 2 and 4), a property not shared by baselines,
highlighting the complexity of embedding design.



Table 6. Ablation Study (RMSE (↓) in µmol/mol |ACC (↑)). (a) Comparison of varying number of historic data points; (b) Evaluation of
different temporal resolutions; (c) Assessment of the impact auxiliary variables. Experiments are conducted using CO2-Net (L).

(a) Historic Data Points.
# point CT # point CMIP6
0h 3.55 |0.83 0m 20.0 |0.92
12h 3.47 |0.83 1m 17.3 |0.87
24h 3.36 |0.85 3m 14.8 |0.99
48h 3.28 |0.86 4m 5.31 |0.99
96h 3.43 |0.84 5m 8.03 |1.00

(b) Resolution.
Res. CT Res. CT

3h 3.36 |0.85 18h 5.34 |0.26
6h 4.88 |0.42 24h 5.57 |0.15
9h 5.04 |0.30 36h 5.72 |0.09
12h 4.95 |0.30 48h 5.67 |0.08

(c) Contribution of Auxiliary Variables.
Removed Var. UAS VAS Both HUSS PS TAS All GPH ORO Both

CT (RMSE) 3.48 3.45 3.50 3.43 3.45 3.43 3.45 3.38 3.40 3.43
CT (ACC) 0.84 0.84 0.84 0.84 0.84 0.84 0.84 0.85 0.85 0.84

CMIP6 (RMSE) 31.3 40.0 44.7 12.3 13.2 8.47 31.7 — — —
CMIP6 (ACC) 0.83 0.38 0.43 0.88 0.98 0.72 0.35 — — —

Obs7 (Loss): Semi-supervised loss improves the recon-
struction precision of CO2-Net (L) but is less effective for
baseline models (Table 5c). On the CMIP6 dataset, CO2-
Net (L) achieves a smaller RMSE of 5.31 µmol/mol with
the wind reconstruction loss, compared to 10.83 µmol/mol
without it. These results demonstrate the compatibility of
the spatio-temporal factorization with the wind reconstruc-
tion loss, consistent with Theorem 3. While the loss is
ineffective without explicit factorization, showing the entan-
glement between the model architecture and the design of
self-supervised task in CO2 reconstruction.

4.5. Ablation: Hyper-parameters and Auxiliaries
We analyze the effects of historic data points, temporal

resolution, and auxiliary variables on performance, based
on CO2-Net (L). Ablation study on the loss coefficient λ is
provided in Appendix F.3. Historic Data Points: Moderate-
length historical sequences improve performance, while ex-
cessively long sequences degrade it (Table 6a). This reflects
a trade-off between capturing relevant temporal features
and introducing less relevant data. Temporal Resolution:
Higher temporal resolution generally improves performance
(Table 6b). For example, on CarbonTracker, a 3-hour resolu-
tion achieves the lowest RMSE and highest ACC, consistent
with prior findings [4]. Auxiliary Variables: Wind flow
variables (UAS, VAS) and dynamical variables (HUSS, PS,
TAS) significantly affect reconstruction performance, while
static variables (GPH, ORO) have minimal impact (Table 6c).
Removing wind flow variables leads to the largest perfor-
mance drop, highlighting their importance in modeling CO2

dynamics, constructing spatio-temporal embedding, and en-
abling semi-supervised loss function.

5. Related Work
Global Reconstruction of Carbon Dioxide. Traditional

methods for global surface CO2 reconstruction like Bayesian
synthesis [12], variational approaches [21] and Kalman fil-
ters [32] rely on computationally intensive transport models
and extensive priors. Although accurate, their computa-
tional demand and dependence on priors limit their ability
to achieve high-resolution modeling. Recently, data-driven
methods like ClimaX [29], ClimODE [42] and Aurora [5]
have revolutionized weather prediction by accelerating com-
putation and improving accuracy. However, their application
to CO2 reconstruction remains largely unexplored.

Data-driven Methods for Data Reconstruction. There
are three main techniques for data reconstruction: Super
Resolution (SR), using methods like SinSR [44] and Mesh-
freeFlowNet [10], upscales low-resolution images, but it
is unsuitable here due to the extreme sparsity of observa-
tions. Neural Inpainting, using GANs [17, 34], ViTs [1] and
diffusion models [38], produces semantically meaningful in-
painting. Implicit Neural Representations (INRs) [9, 27, 35]
parameterize sensor or density domains and rely on transfor-
mations for supervision. However, these methods only focus
on static reconstruction, overlooking temporal dynamics es-
sential for spatio-temporal applications.

Spatio-Temporal Models. Spatio-temporal models en-
hance dynamic system performance by capturing spatial and
temporal relationships, typically following three approaches.
Two-stream architectures, like Spatio-Temporal Side Tun-
ing [43] and CAST [19], separate spatial and temporal pro-
cessing. Token-based encoding, as in Valley [26], encodes
inputs into distinct spatial and temporal tokens for indepen-
dent processing. Integrated spatio-temporal representations,
such as Spatio-Temporal Representation Learning [39, 48],
combine spatial and temporal features into a unified model
using deep learning. However, these methods lack a formal
mathematical proof for factorization, particularly its physical
interpretation and connection to scientific principles.

6. Broader Impact and Future Work
Conclusion and Broader Impact. We propose CO2-Net

for global surface CO2 reconstruction, achieving state-of-
the-art performance on reanalysis data and comparable re-
sults to inversion models on real observations. Built on the
advection-diffusion equation, which also governs other trac-
ers like temperature and atmospheric gases (e.g., nitrogen
dioxide and methane), our CO2-Net can be extended be-
yond CO2 reconstruction, offering a versatile framework for
climate analysis and environmental monitoring. Our prelimi-
nary results in Appendix F suggest its potential applicability
to reconstructing other atmospheric variables, encouraging
further exploration in broader environmental contexts.

Future Work. Our model does not yet fully incorporate
physical laws, such as conservation principles, which are cru-
cial for ensuring physical consistency. Future research could
integrate these constraints to improve the fidelity of recon-
structions. We hope this work inspires further advancements
in data-driven atmospheric modeling.
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Supplementary Material

A. Proof of Proposition 1
We first recall some important notations. Let Lν [·] be the

linear advection–diffusion operator

Lν [φ] =
∂φ

∂t
+ (w · ∇)φ − ν∇2 φ,

where w(θ, ϕ, t) is the wind field, ν(θ, ϕ, t) is the diffusion
coefficient, and ∇2 is the spherical Laplacian on S2. Sup-
pose we have a constrained PDE:

Lν [φ] = s(θ, ϕ, t), φ
∣∣
Z×[0,T ]

= f
∣∣
Z×[0,T ]

,

where s is a given source term and φ = f on the subset
Z × [0, T ] (representing observational data). The goal is to
prove:

(1) Superposition. The general solution φgeneral to the
constrained PDE is the sum of a particular solution φpart and
a homogeneous solution φhomo.

(2) Time-Invariance of φpart. If w, ν and s are constant
over the time interval [τ, τ +∆t], then φpart becomes time-
invariant in that interval, depending only on the initial time
τ .

Proof. (1) Proof of Superposition
Step 1. Define the particular solution. Consider a particu-
lar solution φpart satisfying

Lν [φpart] = s.

Such a solution does not necessarily match the observation
f on Z × [0, T ]; it only accounts for the source s.
Step 2. Construct the homogeneous solution. Let φ be
a solution of the same PDE with the constraint φ = f on
Z × [0, T ]. Define

φhomo = φ− φpart.

Because Lν is a linear operator,

Lν [φhomo] = Lν [φ]− Lν [φpart] = s− s = 0.

Hence, φhomo solves the homogeneous PDE.
Step 3. Enforce the boundary constraint. On Z × [0, T ],
where φ = f , we have

φhomo = φ− φpart = f − φpart,

which forces φhomo to match that boundary constraint in
conjunction with φpart. Since φ was an arbitrary solution, all
solutions can be decomposed as

φ = φpart + φhomo.

This proves the superposition principle.
(2) Proof of Time-Invariance of φpart
Step 1. Assume time-invariant source field, wind field
and diffusion coefficients. Assume the wind field, diffusion
coefficient and source term are constant for t ∈ [τ, τ +∆t],

w(θ, ϕ, t) = w(θ, ϕ), ν(θ, ϕ, t) = ν(θ, ϕ), s(θ, ϕ, t) = s(θ, ϕ).

Thus, the operator

Lν [φ] =
∂φ

∂t
+ (w · ∇)φ− ν∇2φ

has no explicit time-dependence over [τ, τ +∆t].
Step 2. Derive the steady-state equation. Assume a partic-
ular solution φpart satisfying

(w · ∇)φpart − ν∇2φpart = s.

Substituting into Lν [φpart] = s yields

∂φpart

∂t
+ (w · ∇)φpart − ν∇2φpart = s.

Subtracting the first equation from the second equation gives

∂φpart

∂t
= 0.

Hence, φpart is time-invariant in the interval [τ, τ +∆t].
Step 3. Analyze the dependence on the Initial Time. Once
φpart(θ, ϕ, τ) is specified at t = τ , it remains the same for t ∈
[τ, τ +∆t]. Thus it depends only on τ (and spatial boundary
conditions). Therefore, φpart can be taken as a time-invariant
solution whenever the PDE coefficients remain constant in
the time interval.

B. Proof of Theorem 2
Proof idea for existence and uniqueness of the ana-

lytical solution. The Cauchy-Kovalevskaya Theorem for
second-order parabolic equations guarantees the existence
and uniqueness of an analytic solution, provided the initial
value g is analytic on the entire domain S2. Thus, we first
establish the existence of a unique function g that satisfies
f = g on Z and is analytic on S2. With this, the theorem
directly ensures the existence and uniqueness of the solution.

Proof idea for finding the explicit form. Since the solu-
tion φ is real-analytic, it admits an expansion as an infinite
series of spherical harmonics. Furthermore, we demonstrate
that when the wind flow is zonal, the expansion coefficients
take a simplified form.



Proof. (1) Existence and uniqueness of the analytical solu-
tion. Since Z is an open set on which the real–analytic func-
tions f and g agree, the identity theorem for real–analytic
functions implies that f and g must coincide on the entire
sphere (which is connected). Consequently, our PDE prob-
lem reduces to a standard initial–value problem with an ana-
lytic initial condition. Furthermore, because the advection–
diffusion equation is a second–order parabolic PDE and its
coefficients ν, s, and the wind w are all analytic, the Cauchy–
Kovalevskaya theorem ensures that this PDE admits a unique
real–analytic solution.

(2) Explicit form in terms of infinite series of spherical
harmonics. Let S2 = {x ∈ R3 : ∥x∥ = 1} denote the
unit sphere. In spherical coordinates (θ, ϕ), where θ ∈ [0, π]
(polar angle) and ϕ ∈ [0, 2π) (azimuthal angle), the space
L2(S2) of square-integrable functions on S2 is spanned by
the set of spherical harmonics {Y m

n (θ, ϕ)}, which form a
complete orthonormal system. Consequently, for each fixed
t, any function φ : S2 × R → R admits a unique expansion
in terms of spherical harmonics:

φ(θ, ϕ, t) =

∞∑
n=0

n∑
m=−n

An,m(t)Y m
n (θ, ϕ),

where the coefficients An,m(t) are given by the inner prod-
uct:

An,m(t) =

∫
S2

φ(θ, ϕ, t)Y m
n (θ, ϕ) dΩ,

with dΩ = sin θ dθ dϕ being the standard measure on the
sphere. The series converges in the L2(S2)-sense for each
t, and if φ is smooth in (θ, ϕ), then the convergence is uni-
form together with all derivatives. The spherical harmonics
Y m
n (θ, ϕ) are defined as

Y m
n (θ, ϕ) = Nn,me

imϕPm
n (cos θ),

where Pm
n (x) are the associated Legendre functions of de-

gree n and order m. Nn,m is a normalization factor ensuring
orthonormality with respect to the inner product:∫ π

0

∫ 2π

0

Y m
n (θ, ϕ)Y m′∗

n′ (θ, ϕ) sin θ dθ dϕ = δnn′δmm′ .

Each Y m
n is an eigenfunction of the Laplacian operator ∇2

on the sphere:

∇2Y m
n (θ, ϕ) = −n(n+ 1)Y m

n (θ, ϕ).

By the completeness of the set {Y m
n } in L2(S2), it follows

that any function φ(θ, ϕ, t) (for each fixed t) can be ex-
pressed as an infinite linear combination of spherical har-
monics. If φ is sufficiently smooth, then the series converges
uniformly, and differentiation can be performed term by term.
Thus, the function φ(θ, ϕ, t) can always be represented as
an infinite series of spherical harmonics.

Furthermore, let the source function s(θ, ϕ) have an ex-
pansion in terms of spherical harmonics

s(θ, ϕ) =

∞∑
n=0

n∑
m=−n

Sn,mY
m
n (θ, ϕ),

where the coefficients

Sn,m =

∫
S2

s(θ, ϕ)Y m
n (θ, ϕ) dΩ.

Using the eigenvalue property of spherical harmonics and
the zonal wind, the equation for φ transforms into an infinite
system of coupled ordinary differential equations (ODEs)
for An,m(t):

dAn,m

dt
+ imUAn,m = −νn(n+ 1)An,m + Sn,m.

The general solution to this first-order linear ODE is obtained
using the integrating factor e(imU+νn(n+1))t, given by

An,m(t) = e−(imU+νn(n+1))t(An,m(0)+∫ t

0

Sn,me
(imU+νn(n+1))τdτ).

We can rewrite the the formula in the following form

An,m(t) = Bn,me
−ν(n+1)nt+imUt + Cn,m,

where

Bn,m = An,m(0)− Sn,m

νn(n+ 1)− imU
,

Cn,m =
Sn,m

νn(n+ 1)− imU
.

C. Proof of Theorem 3
Recall that we consider the advection-diffusion equation

without source term (the solution is homogeneous ) on the
unit sphere S2,

∂φ

∂t
+ (w · ∇)φ = D∇2φ.

We want to argue that if we know the evolution of φ over
time (for appropriate choices of initial conditions), then the
field w can be uniquely determined.

Proof. Step 1. Assume two wind fields. Suppose there
exist two smooth, time-dependent vector fields w1 and w2

on S2 satisfies the equation without source term, giving:

∂φ

∂t
+ (w1 · ∇)φ = D∇2φ,



and
∂φ

∂t
+ (w2 · ∇)φ = D∇2φ.

Step 2. Subtract the two equations. Subtracting the second
equation from the first gives:(

w1 −w2

)
· ∇φ = 0.

This equality holds for every point on S2 and for all t ∈
[0, T ], proving the pointwise orthogonality between the vec-
tor field w1 −w2 and the gradient ∇φ.
Step 3. Non-vanishing gradient. Given ∇φ ̸= 0 every-
where in the domain, φ acts locally as a coordinate function
with well-defined level sets, which are smooth curves on S2.
Consequently, the condition:

(w1 −w2) · ∇φ = 0

implies that w1 − w2 is orthogonal to ∇φ at every point,
meaning w1 − w2 must be tangent to the level sets of φ.
On a connected domain, the only smooth vector field that
is tangent to the level sets of a smooth function with a non-
vanishing gradient is the zero vector field. Therefore, we
must have

w1 −w2 = 0,

which implies
w1 = w2,

proving the uniqueness of w.

D. Neural Representation of the Solution
By Theorem 2 , we have shown that the solution to the
constrained PDE can be represented in the following form:

φ(θ, ϕ, t) =
∑
n≥1

∑
|m|≤n

An,m(t)eimϕPm
n (cos θ). (4)

Now we are going to present the following theorem to show
that this solution can be represented by a neural network
shown in Figure 5.

Theorem 4. For any point z ∈ S2, let (θ, φ) denote the
polar coordinate of the point z. Define

Zk(φ, θ) = {eimϕPm
k (cos θ)}km=−k

and
Tk(t) = {Ak,m(t)}km=−k.

Therefore, the solution (4) can be implemented by the neural
network of the architecture shown in Figure 5.

Proof. Clearly, the general solution can be easily repre-
sented by the the linear combination of Zk and Tk. Each
function takes the input from the input of the entire model
which consists of the coordinate, temporal embedding and
the spatial embedding.

Figure 5. (a) The neural architecture for the solution in theorem 4.
(b) Overview of CO2-Net.

E. Experiment Details
In this section, we present a detailed description of the

datasets in E.1, specify the hyper-parameters for all models
in E.2, and elaborate on the evaluation metrics in E.3.

E.1. Data
We conduct experiments using three datasets: Carbon-

Tracker [16], the Coupled Model Intercomparison Project
Phase 6 (CMIP6) [11] and GLOBALVIEWplus (GV+) [36].
These datasets provide comprehensive information essential
for accurate CO2 reconstruction and analysis of atmospheric
dynamics.

CarbonTracker is a sophisticated CO2 measurement and
modeling system developed by National Oceanic and Atmo-
spheric Administration (NOAA). Its primary objective is to
monitor global CO2 uptake and emissions over time. Car-
bonTracker integrates atmospheric CO2 observations with
simulated atmospheric transport models to estimate surface
fluxes of CO2. We use CarbonTracker released in 2022,
which provides global estimates of CO2 concentrations with
a spatial resolution of 2◦ × 3◦ and temporal coverage from
January 2000 to December 2020.

CMIP6 is an international collaborative project that en-
compasses outputs from approximately 100 climate models
developed by research institutions worldwide. CMIP6 pro-
vides comprehensive access to a wide variety of climate
variables, including surface pressure, temperature, humidity,
wind speed and CO2 concentration, offering a multidimen-
sional perspective on the physical and chemical processes
that govern the climate. We use data from historical experi-
ments conducted by the CanESM5 model, with a temporal
coverage from January 1850 to December 2014. We regrid it
to a spatial resolution of 2◦ × 3◦, ensuring consistency with



CarbonTracker.
GLOBALVIEWplus is a comprehensive data platform

developed by NOAA. GV+ integrates atmospheric and
oceanic observations from monitoring systems around the
world to support climate research and weather forecasting.
We use CO2 observations from GV+ version 10.0 (Septem-
ber 26th, 2024), which offers CO2 measurements at 3-hour
intervals from 96 surface spots, thereby ensuring temporal
resolution consistent with CarbonTracker.

E.2. Model Hyper-parameters

CO2-Net. We detail the default hyper-parameters used
for CO2-Net in Table 7. We set the patch size to 9 × 12,
preserving the aspect ratio consistent with the spatial di-
mensions of the datasets. We use AdamW [24] optimizer
for training, and set momentum betas to 0.9 and 0.999.
We set the learning rate and weight decay to 5e − 4 and
8e − 4 respectively, which are carefully selected from
the sets {5e − 5, 1e − 4, 3e − 4, 5e − 4, 8e − 4} and
{1e− 4, 5e− 4, 8e− 4, 1e− 3} via grid search. We adopt a
cosine sheculer [25] for learning rate scheduling.

Table 7. Hyper-parameters used for CO2-Net.

Hyper-parameter Meaning Value

p Patch size 9, 12
D Embedding dimension 768

# Blocks Number of ViT blocks
Small: 1
Base: 4
Large: 12

# Heads Number of attention heads 12

MLP dimension
The hidden dimension of
the MLP layers

3072

Prediction depth
Number of layers in
the output head

3

Drop path For stochastic depth [14] 0.2
Dropout Dropout rate 0.2

Vision Transformer (ViT). We configure the hyper-
parameters for ViT [1] as described in Table 8. We employ
AdamW optimizer with the momentum betas set to 0.9 and
0.999. We set the learning rate and weight decay to 1e− 4
and 5e− 4 for both datasets.

CycleGAN. We use the hyper-parameters in Table 9 for
CycleGAN [34] in all our experiments. We use Adam [18]
optimizer when training CycleGAN, and set the momentum
betas to 0.5 and 0.999. We train the model with a learning
rate of 1e− 4.

Senseiver. We employ the hyper-parameters in Table 10
for Senseiver [35]. We use Adam optimizer with default
momentum betas, which are 0.9 and 0.999. We train the
model with a learning rate of 1e − 4 and adopt a cosine
scheduler with warm up for 5 epochs.

Table 8. Hyper-parameters used for Vision Transformer (ViT).

Hyper-parameter Meaning Value

p Patch size 9, 12
D Embedding dimension 768
# Blocks Number of ViT blocks 12
# Heads Number of attention heads 16

MLP dimension
The hidden dimension of
the MLP layers

2048

Dropout Dropout rate 0.1

Table 9. Hyper-parameters used for CycleGAN.

(a) Hyper-parameters for Generator

Hyper-parameter Meaning Value

Kernel size Kernel size of residual block 3
Stride Stride of residual block 2
Padding size Padding size of residual block 1
Padding type Padding mode of residual block Reflection
Residual blocks Number of residual blocks 9
Dropout Dropout rate 0.5

# Filters
Number of filters in the last
convolution layer

64

(b) Hyper-parameters for Discriminator

Hyper-parameter Meaning Value

Kernel size
Kernel size of each
convolution layer

4

Stride Stride of each convoluti layer 2

Padding size
Padding size of each
convolution layer

1

Padding type
Padding mode of each
convolution layer

Zeros

# Layers Number of layers 3

# Filters
Number of filters in the last
convolution layer

64

Table 10. Hyper-parameters used for Senseiver.

Hyper-parameter Meaning Value

Ns Number of sensor observations 8

Nf
Number of frequency bands for
positional encoding

32

Nc Hidden dimension 64
Depth Number of encoder blocks 3

L
Number of self attention layers
in each block

3

SwinLSTM. We configure SwinLSTM [40] with the
hyper-parameters in Table 11. We adopt AdamW optimizer
with the momentum betas set to 0.9 and 0.999. We set the
learning rate to 1e− 4 and employ a cosine scheduler with
warm up for 100 epochs.



Table 11. Hyper-parameters used for SwinLSTM.

Hyper-parameter Meaning Value

p Patch size 9, 12
D Embedding dimension 126
# Blocks Number of ViT blocks 12

# Heads
Number of attention heads
in different layers

4, 8

Window size
Window size of Swin Trans-
former layer

2

MLP dimension
The hidden dimension of
the MLP layers

2048

Dropout Dropout rate 0.0

E.3. Metrics
We assess the model performance using latitude-weighted

RMSE and Anomaly Correlation Coefficient (ACC).
Latitude-weighted RMSE quantifies the average error

between the reconstructed results and the ground-truth val-
ues. A lower RMSE indicates higher accuracy. It is calcu-
lated as follows:

RMSE =
1

N

N∑
t=1

√√√√ 1

HW

H∑
h=1

W∑
w=1

α(h)(ythw − uthw)2,

whereN is the total number of time points, H is the number
of latitude grid points, and W is the number of longitude
grid points, forming a grid over the Earth’s surface. The
index t refers to a specific time point, while h and w rep-
resent specific latitude and longitude indices, respectively.
The observed value at a given time t, latitude h, and lon-
gitude w is denoted by ythw, and the corresponding recon-
structed value is uthw. The term α(h) is the latitude weight,
which accounts for the curvature of the Earth, and is de-
fined as α(h) = cos(h)/

(
1
H

∑
h′ cos(h′)

)
. The expression

(ythw − uthw)
2 represents the squared difference between

the observed and reconstructed values at each grid point.
The summations over t, h, and w aggregate the errors over
all dimensions. The square root ensures that the RMSE is
expressed in the same units as the original variable.

Anomaly Correlation Coefficient (ACC) assesses the
similarity between the reconstructed and observed patterns of
anomalies, emphasizing relative variations over exact values.
Higher ACC values indicate more accurate reconstruction
of anomaly patterns. It is defined by the following formula:

ACC =

∑
t,h,w α(h)ỹthwũthw√∑

t,h,w α(h)ỹ2
thw

∑
t,h,w α(h)ũ2

thw

,

where the observed anomaly, ỹthw, is defined as the differ-
ence between the observed value and the empirical mean C
of the observed values, i.e., ỹthw = ythw − C. Similarly,
the reconstructed anomaly is ũthw = uthw − C. The lati-
tude weight α(h) is the same as in the RMSE formula and

Table 12. Size, efficiency and global reconstruction performance
comparison of different models on the CT dataset. * indicates dy-
namic reconstruction model, while others are static reconstruction
models.

Model Sizes TimeTrain VRAMTrainTimeInfer VRAMInfer Global

(M) (s/epoch) (GB) (s) (GB) RMSE ACC

Senseiver 0.11 377 1.00 3 5.04 6.39±0.45 0.43±0.10

SwinLSTM∗ 3.3 527 6.48 38 0.61 5.31±0.01 0.61±0.00

CycleGAN 28 366 9.36 14 5.42 4.70±0.01 0.71±0.00

ViT 76 79 5.40 6 1.21 5.42±0.21 0.50±0.04

CO2-Net∗ (S) 38 154 9.15 25 4.36 3.59±0.06 0.72±0.01

CO2-Net∗ (B) 95 407 17.82 30 4.59 3.41±0.04 0.77±0.01

CO2-Net∗ (L) 247 1212 38.72 73 5.18 3.36±0.04 0.85±0.00

adjusts for the varying grid sizes due to the Earth’s curva-
ture. The numerator,

∑
t,h,w α(h)ỹthwũthw, is the weighted

sum of the products of observed and reconstructed anoma-
lies. The terms

∑
t,h,w α(h)ỹ

2
thw and

∑
t,h,w α(h)ũ

2
thw are

the weighted sums of squared observed and reconstructed
anomalies, respectively. The square root in the denomina-
tor normalizes the anomaly products, ensuring that ACC is
dimensionless.

F. Additional Experimental Results

In this section, we provide more comprehensive exper-
imental results, including discussion on computational ef-
ficiency in F.1, evaluation of the extendibility of CO2-Net
to reconstruct other variables in F.2, reconstruction perfor-
mance across all regions in F.3, as well as a comparison of
different variogram models used in kriging interpolation F.4.

F.1. Computational Efficiency

We evaluate the computational efficiency of our CO2-
Net against other data-driven baselines on two NVIDIA
RTX 6000 Ada GPUs under the same batch size of 32 per
GPU. We experiment with Senseiver†, SwinLSTM† and Cy-
cleGAN† based on the official implementations from their
github repositories. We experiment with ViT based on our
own implementation. Table 12 displays the model size (num-
ber of parameters), training time (time per epoch), training
memory (maximum GPU VRAM usage during training), in-
ference time (time for processing the test set) and inference
memory (maximum GPU VRAM usage during inference).
Our smallest model CO2-Net (S) achieves lower RMSE and
higher ACC compared to other baselines, while showing
satisfactory efficiency. Furthermore, CO2-Net (B) and (L)
achieve better performance than CO2-Net (S) at the cost
of computational efficiency, providing choices to balance
performance and efficiency.

†https://github.com/OrchardLANL/Senseiver
†https://github.com/SongTang-x/SwinLSTM
†https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix



F.2. Implication For Broader Impact
We assess the model ability to reconstruct other vari-

ables governed by the advection-diffusion equation (e.g.,
PS, HUSS and TAS) using the CarbonTracker dataset, and
compare its performance with other baselines, the results
are presented in Table 13. The task is formulated as recon-
structing the target variables using the spot observations,
wind flow and auxiliary variables, in alignment with CO2

reconstruction. For spot observations, we assume the target
variables are only observed at the same monitoring spots
where CO2 is measured (i.e., 96 surface spots from the
GLOBALVIEWplus). As in CO2 reconstruction, we use
data from 72 spots for training, while the rest 24 spots are
kept for testing. CO2-Net outperforms all baselines across all
variables, which could be attributed to its physics-informed
architectural design. These findings highlight the versatility
and effectiveness of CO2-Net in reconstructing atmospheric
variables beyond CO2.

Table 13. RMSE (↓) and ACC (↑) comparison of different models
for reconstructing three atmospheric variables. ∗ indicates spatio-
temporal reconstruction models, others are static reconstruction
models.

Methods
PS HUSS TAS

RMSE
ACC

RMSE
ACC

RMSE
ACC

(Pa) (×10−3%) (K)

Spherical 9787.14 0.00 6.93 0.01 26.97 0.02
Exponential 9199.71 0.00 6.81 0.01 25.04 0.03
Senseiver 3019.52 0.00 2.80 0.06 7.65 0.04

CycleGAN 3674.32 0.07 2.34 0.50 4.97 0.56
SwinLSTM∗ 5445.14 0.58 3.40 0.88 8.90 0.85

ViT 729.59 0.97 1.96 0.92 3.51 0.95
CO2-Net∗ 191.82 0.96 0.97 0.89 1.34 0.97

F.3. Additional Results
Global Reconstruction Results of CO2-Net (S) and

(B) (Figure 6). Both CO2-Net (S) and (B) capture the trend
of global warming, whereas CO2-Net (B) reconstructs CO2

concentration with higher precision than CO2-Net (S).
Regional Reconstruction Results (Table 14). CO2-Net

outperforms all baselines on both reanalysis data across dif-
ferent regions, showing its capability in regional reconstruc-
tion. We include results from Table 3 for direct comparison.

Reconstruction Results on Real Observation Data (Ta-
ble 15). Even our smallest model CO2-Net (S) achieves
RMSE comparable to inversion models while outperforming
other baselines. CO2-Net (B) and (L) further reduce RMSE
as model size increases.

Ablation Study of Key Components on Carbon-
Tracker (Table 16a and Table 16b). We find that inte-
grating wind-based embedding and the semi-supervised loss
improves the performance of CO2-Net (L). However, the
integration either worsens performance or brings limited
improvement on other baselines, which is similar on CMIP6.

Figure 6. Ground-truth and model reconstructed results of CO2

concentration (µmol/mol) on CarbonTracker in 2000 and 2020.

Ablation Study of Loss Coeffcient (Table 16c). We find
the optimal value of λ through grid search within the set
0.1, 0.2, 0.5, 1, 2. We find the best value of λ to be 0.2 and 1
on CarbonTracker and CMIP6, respectively.

F.4. Numerical Methods
We adopt kriging interpolation [30] as the numerical base-

line for comparison. Kriging is a widely used geostatistical
method that reconstructs unobserved values from sparse ob-
servational data. A key component of kriging interpolation
is the variogram model, which quantifies the spatial corre-
lation between points. We evaluate five distinct variogram
models: Linear, Power, Gaussian, Spherical and
Exponential. We apply kriging interpolation to recon-
struct atmospheric CO2 concentrations from spot observa-
tional data using five different variogram models. The results
are summarized in Table 17, indicating that the Spherical
model yields the best performance among the variogram
models. However, despite this, its performance remains
inferior when compared to data-driven methods.



Table 14. RMSE (↓) in µmol/mol and ACC (↑) comparison of different models across datasets and regions. ∗ indicates spatio-temporal
reconstruction models, others are static reconstruction models.

Dataset Methods Sizes (M) Global Ocean Asia-Europe North-America South-America

RMSE ACC RMSE ACC RMSE ACC RMSE ACC RMSE ACC

CMIP6

Senseiver 0.11 36.47±6.81 0.59±0.16 31.94 0.79 40.52 0.43 38.25 0.42 65.21 0.07
SwinLSTM∗ 3.3 27.42±0.09 0.52±0.01 28.41 0.52 27.70 0.51 25.16 0.48 33.33 0.49
CycleGAN 28 51.48±0.36 0.12±0.04 53.34 0.12 52.01 0.11 47.24 0.11 62.63 0.12

ViT 76 18.18±1.01 0.49±0.02 18.86 0.49 18.38 0.49 16.96 0.48 21.78 0.49
CO2-Net∗ (S) 38 16.18±1.19 0.73±0.07 22.48 0.72 16.27 0.79 19.60 0.77 19.59 0.74
CO2-Net∗ (B) 95 9.91±0.93 0.98±0.03 10.27 0.99 9.91 0.98 9.06 0.98 13.55 0.93
CO2-Net∗ (L) 247 5.31±0.49 0.99±0.00 5.49 0.99 5.36 0.97 4.87 0.93 6.46 0.97

Carbon
Tracker

Spherical – 7.41±0.40 0.12±0.01 5.55 0.14 9.80 0.21 8.23 0.12 14.27 0.20
Exponential – 7.40±0.37 0.11±0.01 5.56 0.13 9.83 0.20 8.18 0.11 14.20 0.20
Senseiver 0.11 6.39±0.45 0.43±0.10 4.74 0.28 9.70 0.50 6.92 0.58 13.72 0.30

SwinLSTM∗ 3.3 5.31±0.01 0.61±0.00 2.90 0.45 6.33 0.65 8.83 0.65 12.20 0.50
CycleGAN 28 4.70±0.01 0.71±0.00 1.57 0.88 8.39 0.73 5.68 0.78 11.21 0.70

ViT 76 5.42±0.21 0.50±0.04 2.27 0.72 9.43 0.63 6.89 0.54 13.32 0.19
CO2-Net∗ (S) 38 3.59±0.06 0.72±0.01 1.32 0.84 6.08 0.72 4.25 0.72 9.36 0.66
CO2-Net∗ (B) 95 3.41±0.04 0.77±0.01 1.03 0.90 5.58 0.77 3.91 0.79 8.68 0.75
CO2-Net∗ (L) 247 3.36±0.04 0.85±0.00 1.09 0.94 5.39 0.85 3.94 0.83 8.42 0.80

Dataset Methods Sizes (M) Asia Europe Africa Australia Antarctica

RMSE ACC RMSE ACC RMSE ACC RMSE ACC RMSE ACC

CMIP6

Senseiver 0.11 64.04 0.02 27.85 0.83 38.57 0.80 59.90 0.10 23.70 0.36
SwinLSTM∗ 3.3 28.17 0.51 25.94 0.51 33.55 0.01 32.68 0.49 13.79 0.49
CycleGAN 28 52.89 0.12 48.70 0.11 63.07 0.12 61.39 0.12 25.80 0.12

ViT 76 18.62 0.49 17.38 0.48 21.43 0.48 21.03 0.50 9.28 0.49
CO2-Net∗ (S) 38 17.17 0.73 18.62 0.74 29.75 0.77 8.42 0.71 28.32 0.76
CO2-Net∗ (B) 95 10.08 0.98 9.16 0.98 12.03 0.99 11.73 0.99 14.32 0.70
CO2-Net∗ (L) 247 5.47 1.00 5.02 0.96 6.51 0.97 6.31 0.99 2.63 1.00

Carbon
Tracker

Spherical – 9.92 0.22 7.99 0.29 10.68 0.18 7.71 0.14 3.42 0.14
Exponential – 9.95 0.21 8.05 0.28 10.62 0.18 7.70 0.15 3.41 0.13
Senseiver 0.11 10.97 0.29 8.82 0.35 10.81 0.30 5.16 0.04 2.71 0.37

SwinLSTM∗ 3.3 8.82 0.65 7.54 0.65 8.34 0.64 4.07 0.06 1.61 0.07
CycleGAN 28 8.44 0.72 6.80 0.81 7.63 0.76 3.14 0.62 0.33 0.98

ViT 76 9.23 0.52 7.69 0.58 9.38 0.34 3.75 0.46 0.68 0.92
CO2-Net∗ (S) 38 6.04 0.73 5.13 0.70 5.58 0.71 2.31 0.37 0.13 0.98
CO2-Net∗ (B) 95 5.75 0.77 5.31 0.75 5.42 0.79 2.37 0.53 0.15 0.99
CO2-Net∗ (L) 247 5.66 0.86 5.03 0.78 5.26 0.86 2.31 0.67 0.16 1.00

Table 15. RMSE(↓) in µmol/mol comparison on real observations.

Methods 4D-Var. COLA Sphe. Expo. Sens. ViT Cycle. Swin. CO2-Net (S) CO2-Net (B) CO2-Net (L)

RMSE 7.80 7.94 8.46 8.40 8.75 9.10 9.45 8.34 8.00 7.86 7.81

Table 16. Ablation study (RMSE (↓, in µmol/mol) |ACC (↑)). on CarbonTracker dataset. (a) Influence of the wind-flow based
spatio-temporal embedding; (b) Impact of the semi-supervised physics-informed loss function; (c) Evaluation of varying λ values for the
semi-supervised loss coefficient.

(a) Wind-Flow based Embedding.
(Settings: CarbonTracker, w/o semi-sup. loss)

Methods Wind ClimODE None

Cycle-GAN 5.00 |0.65 4.74 |0.70 4.70 |0.71
SwinLSTM 5.32 |0.61 5.32 |0.61 5.31 |0.61
ViT 5.25 |0.54 5.29 |0.55 5.42 |0.50
CO2-Net (L) 3.43 |0.84 3.53 |0.84 3.55 |0.83

(b) Semi-supervised Loss.
(Settings: CarbonTraker, w/ wind-based emb.)

Methods w/ w/o

Cycle-GAN 5.15 |0.61 5.00 |0.65
SwinLSTM 5.33 |0.61 5.32 |0.61
ViT 5.17 |0.56 5.25 |0.54
CO2-Net (L) 3.36 |0.85 3.43 |0.84

(c) Loss Coeffcient λ.
(Settings: w/ wind-based emb., w/ semi-sup. loss)

λ CT CMIP6
0.1 3.38 |0.85 36.89 |0.60
0.2 3.36 |0.85 19.51 |0.97
0.5 3.47 |0.85 13.17 |0.99
1 3.40 |0.85 5.31 |0.99
2 3.45 |0.84 18.25 |0.98



Table 17. Comparison of RMSE (↓, in µmol/mol) and ACC (↑) for different variogram models used in kriging interpolation across various
regions.

Regions Linear Power Gaussian Spherical Exponential

RMSE ACC RMSE ACC RMSE ACC RMSE ACC RMSE ACC

Global 7.59 0.13 7.50 0.12 6382.26 0.12 7.41 0.12 7.40 0.11
Ocean 5.92 0.17 5.76 0.16 6620.94 0.14 5.55 0.14 5.56 0.13

North America 7.83 0.18 8.07 0.14 875.58 0.13 8.23 0.12 8.18 0.11
South America 14.05 0.19 14.07 0.20 3134.77 0.19 14.27 0.20 14.20 0.20

Asia 9.84 0.22 9.82 0.22 7398.96 0.20 9.92 0.22 9.95 0.21
Europe 7.89 0.30 7.91 0.29 7568.58 0.26 7.99 0.29 8.05 0.28

Australia 8.80 0.15 8.55 0.15 12979.02 0.12 7.71 0.14 7.70 0.15
Africa 10.59 0.18 10.55 0.19 5493.61 0.14 10.68 0.18 10.62 0.18

Antarctica 3.50 0.14 3.48 0.14 877.74 0.09 3.42 0.14 3.41 0.13
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