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Supplementary Material

1. Details of Generative Renderer

Our generative renderer aims to take the scene’s intrinsic
properties as input and generate the input image as out-
put. It is fine-tuned from Stable Diffusion v2, with a train-
able ControlNet conditioned on 9-channel intrinsic proper-
ties (albedo, metallic, roughness, normal, and depth). The
model is optimized by the AdamW optimizer with a learn-
ing rate of 1e-4 and a weight decay rate of 1e-2. Unlike
traditional physics-based renderers, our generative renderer
does not require environmental lighting as input and can
still produce realistic rendered images. Besides, as shown in
Figure 1, our generative renderer enables various potential
applications, including uncontrollable relighting, material
editing, and object removal. Specifically, given the scene’s
intrinsic properties, our generative renderer can generate
images with lighting conditions different from the original
image, although this is uncontrollable since the lighting is
represented by Gaussian noise. Additionally, we can man-
ually adjust the albedo color for material editing or remove
the target object from the intrinsic properties for object re-
moval.

2. Details of Reconstruction Loss

Similar to Dreamfusion [8], we first compute the gradient of
L = µθ(I) · stop gradient [Lrec] with respect to the param-
eters θ of the inverse rendering model, where µθ(I) denotes
the predicted intrinsic property and I is the input image.
Then, the parameters can be updated using an optimizer.
The pseudo-code is shown in Figure 2.

3. Details of Application

In order to achieve controllable lighting editing or object
insertion, we provide a solution to optimize the environ-
mental lighting based on the high-quality intrinsic proper-
ties predicted by our method. Specifically, similar to [6],
we use pre-integrated environment lighting parameterized
by Spherical Gaussians (SG) for global illumination, along
with 48 SG emission profiles to represent point lights. The
SG parameters are then determined by optimizing a L2 loss
between the re-rendered output and the input. After fitting,
the parameters of the light sources, such as color or inten-
sity, can be adjusted independently to achieve controllable
lighting editing. Meanwhile, with the environmental light-
ing of the scene, we can render an image with the inserted
3D object using the estimated lighting to achieve realistic
object insertion.
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Figure 1. Examples of our generative renderer.

4. More Visual Comparison on Synthetic Data
Figures 3, 4, 5, 6, 7, 8, 9, and 10 provide more visual com-
parison of inverse rendering on the synthetic InteriorVerse
dataset [13]. As shown, our method clearly outperforms
previous methods on material and geometry estimation.

5. More Visual Comparison on Real Data
Figures 11, 12, 13, 14, 15, 16, 17, and 18 provide more vi-
sual comparison on material (albedo, metallic, and rough-
ness) and geometry estimation (depth and normal). Com-
paring the results, it is clear that our method outperforms
current state-of-the-art inverse rendering methods, and is
able to produce comparable or even better results than spe-
cialized methods for material and geometry estimation.

6. More Application Results
We in Figure 19 provide more virtual object insertion re-
sults, while Figure 20 gives additional results on material
and lighting editing. As shown, these application results are
visually natural, manifesting the robustness of our predicted
intrinsic properties.
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params = IR_model.init() # inverse rendering model
opt_state = optimizer.init(params)
generative_renderer = diffusion.load_ControlNet()
for nstep in iterations:
t = random.uniform(0., 1.)
alpha_t, sigma_t = diffusion.get_coeffs(t)
eps = random.normal(img_shape) # sample a noise from Gaussian distribution, representing the unknown lighting
intrinsics = IR_model(input_image) # Get an one-step intrinsic properties observation.
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z_t = alpha_t * x + sigma_t * eps # Diffuse observation.
epshat_t = generative_renderer.epshat(z_t, intrinsics, t) # Score function evaluation.
L_rec = epshat_t - eps # generative reconstuction loss
g = grad(dot(stopgradient[L_rec], intrinsics), params)
params, opt_state = optimizer.update(g, opt_state) # Update params with optimizer.

return params

Figure 2. Pseudo code for the SDS-based reconstruction loss via the generative renderer that defines a differentiable mapping from
parameters to intrinsic properties.The gradient g is computed without backpropagating through the generative renderer’s U-Net. We used
the stopgradient operator to express the loss, but the gradient of the parameter can also be easily computed as: g = matmul(Lrec,
grad(intrinsics, params)).
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Figure 3. More qualitative comparison of albedo estimation on the synthetic InteriorVerse dataset [13].
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Figure 4. More qualitative comparison of albedo estimation on the synthetic InteriorVerse dataset [13].
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Figure 5. More qualitative comparison of albedo estimation on the synthetic InteriorVerse dataset [13].
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Figure 6. More qualitative comparison of albedo estimation on the synthetic InteriorVerse dataset [13].
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Figure 7. More qualitative comparison of metallic estimation on the synthetic InteriorVerse dataset [13].

Input IndoorIR [13] RGBX [12] Ours GT

Figure 8. More qualitative comparison of roughness estimation on the synthetic InteriorVerse dataset [13].
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Figure 9. More qualitative comparison of normal estimation on the synthetic InteriorVerse dataset [13].
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Figure 10. More qualitative comparison of depth estimation on the synthetic InteriorVerse dataset [13].
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Figure 11. More qualitative comparison of albedo estimation on real-world images.
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Figure 12. More qualitative comparison of albedo estimation on real-world images.
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Figure 13. More qualitative comparison of albedo estimation on real-world images.
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Figure 14. More qualitative comparison of albedo estimation on real-world images.
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Figure 15. More qualitative comparison of metallic estimation on real-world images.
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Figure 16. More qualitative comparison of roughness estimation on real-world images.
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Figure 17. More qualitative comparison of normal estimation on real-world images.
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Figure 18. More qualitative comparison of depth estimation on real-world images.
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Figure 19. More results of virtual object insertion.
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Figure 20. More results of material and lighting editing.
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