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A. Additional Details on Dataset and Metric
A.1. Dataset Sources
All datasets utilized in this study are sourced from publicly
available open-source repositories, including the CMU-
Mocap, MuPoTS-3D, and 3DPW datasets. For the 3DPW
dataset, we adhere to the protocol outlined in the SoMoF
Benchmark [1, 2], which has been used in previous stud-
ies [5, 7]. For the 3DPW-RC dataset, we apply the same
scripts as in [7] to remove camera movement, thereby en-
hancing the realism of human motion. For the CMU-Mocap
and MuPoTS-3D datasets, we synthesize data based on the
original datasets, following approach in [6]. Since synthe-
sized datasets from prior works are not publicly available,
all experiments were conducted on our synthesized versions
by running official codes of compared methods.

A.2. Metric Formulations
Given the predicted motion Y = {yp,jt } ∈ R3J×P×T ′

for
P persons across T ′ time frames with J joints per person,
along with the corresponding ground truth Ŷ = {ŷp,jt } ∈
R3J×P×T ′

, the following metrics are used for evaluation.
MPJPE. The Mean Per Joint Position Error (MPJPE) mea-
sures the overall joint prediction accuracy by averaging er-
rors across all time frames:

MPJPE =
1

P · T ′ · J

P∑
p=1

T ′∑
t=1

J∑
j=1

||yp,jt − ŷp,jt ||2. (A.1)

VIM. The Visibility-Ignored Metric (VIM) focuses on the
average joint error for a specific time frame, and the VIM
score at timestep t is given by:

VIM@t =
1

P

P∑
p=1

√√√√ J∑
j=1

(yp,jt − ŷp,jt )2. (A.2)

JPE. The Joint Precision Error (JPE) assesses both global
and local joint predictions using the mean L2 distance of all
joints for timestep t:

JPE@t =
1

P · J

P∑
p=1

J∑
j=1

||yp,j
t − ŷp,j

t ||2. (A.3)

APE. The Aligned Mean Per Joint Position Error (APE)
evaluates the forecasted local motion by computing the L2

distance for each joint, averaged across all joints at a given

timestep t, with global displacement removed by subtract-
ing the hip joint:

APE@t =
1

P · J

P∑
p=1

J∑
j=1

||(yp,jt −ypt,hip)−(ŷp,jt −ŷpt,hip)||2.

(A.4)
FDE. The Final Distance Error (FDE) quantifies the accu-
racy of the forecasted global trajectory by computing the L2

distance for a specific timestep t:

FDE@t =
1

P · J

P∑
p=1

J∑
j=1

||ypt,hip − ŷpt,hip||2. (A.5)

These metrics provide a comprehensive evaluation of the
accuracy for 3D motion prediction task, capturing both local
joint-wise pose errors and global trajectory deviations.

B. Additional Network and Training Details
Details on PIPS and IPIPS Stages. In order to main-
tain the invariance of our model to the order of individuals,
we introduce Permutation-Invariant Person Sorting (PIPS).
Given the input X ∈ R3J×P×T , we calculate the sum of
distances between each individual and all others as:

dpj
=

P∑
pk ̸=pj

∥xpj

1,hip − xpk

1,hip∥2, j, k = 1, . . . , P. (B.1)

We then sort individuals in descending order based on these
values, modifying the input X . After processing the input
through the model to obtain output Y ′, we apply Inverse
PIPS to recover the original person order, resulting in the
final output Y ∈ R3J×P×T ′

. These two stages ensures that
the output of our model is unchanged for different orders of
individuals in the same scene as the input.
Network for Pre-training. For the experiments in the set-
tings of AMASS/3DPW-Ori and AMASS/3DPW-RC, the net-
work is pre-trained on the AMASS dataset and fine-tuned
on the 3DPW dataset. Given that the number of parameters
has a significant impact on network performance, especially
for lightweight architectures, we utilize a model with 0.65M
parameters to increase its capacity. This is achieved by in-
corporating additional spatial feature updates, as illustrated
in Fig. B.1. Specifically, we introduce Local/Global Spatial
Feature Update, which extend the Local/Global Temporal
Feature Update. These new components maintain a similar
architectural structure to the original components but op-
erate along the spatial dimension rather than the temporal



dimension. As demonstrated in Tab. 1 of the main paper,
our model with 0.65M parameters achieves the best perfor-
mance for the AMASS/3DPW-RC setting and competitive
results for the AMASS/3DPW-Ori setting.
Details for Pre-training Settings. For the experiments in
the settings of AMASS/3DPW-Ori and AMASS/3DPW-RC,
we pre-train our network on AMASS dataset for 100 epochs
with an initial learning rate of 1 × 10−4, which decays by
a factor of 0.8 every 10 epochs. The strategy employed for
network fine-tuning is the same as described in Sect. 3.5 of
the main paper.
Details on Attention-based Designs. In Sect. 4.3 of the
main paper, we compared our architecture with Attention-
based alternatives by replacing our ME block and CI block
with two distinct Attention-based blocks: one employing
Multi-Head Attention (Self-Attention) for local/global tem-
poral feature update and the other utilizing Cross Attention
for local/glocal refinement. The detailed architectures are
illustrated in Fig. B.2. Our results in Tab. 5 of the main pa-
per demonstrate that our proposed model outperforms tra-
ditional Attention-based architectures, which have more pa-
rameters and require greater computational resources.

C. More Experimental Results
In addition to the results evaluated using MEJPE, VIM, and
APE presented in the main paper, we provide additional re-
sults based on the metrics of JPE and FDE in this section.
We also include the results across different key frames for
VIM, JPE, APE, and FDE, along with an analysis of the
computational cost.
Results Evaluated by JPE and FDE. In Tab. C.3, we
present the results evaluated using the JPE and FDE metrics
across all the settings discussed in the main paper, along
with comparisons to previous works. Our EMPMP model
achieves the best JPE results, demonstrating significant su-
periority over the other methods. It also performs excep-
tionally well in FDE, ranking first in seven out of eight
evaluations. Notably, the T2P model [3] predicts multiple
trajectories (F ) and for a fair comparison, we compute the
FDE with F = 1, while using F = 3 for the other metrics.
Detailed Results Across Key Frames. In the main paper,
for all models evaluated using VIM, JPE, APE, and FDE,
we report their average results across key frames. Addi-
tionally, we provide the detailed results for each individ-
ual frame, following the frame selection scheme shown in
Tab. C.1. For the VIM metric on the 3DPW dataset, we
adopt the same frame selection scheme as used in [5, 7] to
ensure consistency and fair comparisons. For other datasets
and metrics, frames are selected at reasonable intervals to
ensure comprehensive evaluation. Tab. C.4 presents the de-
tailed VIM results across multiple settings of the 3DPW
dataset, while Tab. C.5 reports the corresponding JPE, APE,
and FDE results for the same dataset. Similarly, Tab. C.6

shows the VIM results for various settings of the CMU-Syn
and MuPoTS-3D datasets, and Tab. C.7 provides the JPE,
APE, and FDE results for these datasets. These tables pro-
vide detailed results for specific key frames and their av-
erage values, where our model achieves dominant superior
performance in most comparisons, proving its effectiveness
through a comprehensive evaluation of performance metrics
across different timesteps.

Datasets 3DPW CMU-Syn & MuPoTS

Out Length 14frames (900ms) 30frames (2s) 15frames (1s)

VIM 2, 4, 8, 10, 14 2, 6, 11, 21, 30 2, 4, 8, 10, 15

JPE&APE&FDE 7, 14 10, 20, 30 3, 9, 15

Table C.1. Frame selection scheme for different datasets.

Comparison on Computational Cost. In Tab. C.2, we
present the detailed computational costs of our EMPMP
model and the compared methods, including GPU mem-
ory usage, computational FLOPs, and the number of pa-
rameters. Our model demonstrates superior performance
across various settings while maintaining a significantly
lower number of parameters and FLOPs.

Metrics
Memory FLOPs Params

(MB) (G) (M)

MRT [6] ′2021 2281 27.55 6.29
SoMoFormer [5] ′2022 6308 113.37 12.91
TBIFormer [4] ′2023 2826 15.64 7.31
JRT [7] ′2023 15544 767.74 3.68
T2P [3] ′2024 4304 51.67 4.60
Ours 2674 1.67 0.17

Table C.2. Comparisons of computational cost for different mod-
els in the CMU-Syn (2s/2s) setting.

D. Additional Ablation Study
Effectiveness of Learned Affine Transformations. In the
CI block, we incorporate both scale and translation for lo-
cal representation refinement, while employing translation
alone for global representation refinement. To assess the ef-
fectiveness of this design, we conducted an ablation study
exploring various transformation choices for local/global
representation refinement. As presented in Tab. D.1, the
model that utilizes scale and translation for local refinement,
and translation for global refinement, yields the best perfor-
mance compared to alternative configurations.
Ablation Study on Loss Function. Our loss function com-
prises two components: mean joint loss and velocity loss.
As demonstrated in Tab. D.2, the network that excludes ve-
locity loss performs worse in the 3DPW-Ori, 3DPW-RC,
and CMU-Syn settings, thereby highlighting the necessity
of incorporating velocity loss.



Figure B.1. Architectural modifications for our 0.65M-parameter EMPMP involve enhancing the Local/Global Temporal Feature Update
(left) with the addition of the Local/Global Spatial Feature Update (right). These modifications update features along the spatial dimension,
thereby increasing the model’s expressive capacity.

Local Refinement Global Refinement
MPJPE

Scale Translation Scale Translation

× ✓ ✓ ✓ 129.9
✓ × ✓ ✓ 129.4
✓ ✓ × ✓ 128.0
✓ ✓ ✓ × 131.3
✓ ✓ ✓ ✓ 129.0

Table D.1. Ablation study on learned affine transformations for
local and global representation refinement.

Settings 3DPW-
Ori

3DPW-
RC CMU-Syn

In/Out Length 1030ms/900ms 2s/2s 1s/1s

EMPMP-w/o-LV el 137.7 103.7 130.0 74.7
EMPMP 131.8 99.5 128.0 73.5

Table D.2. Ablation study on velocity loss in 3DPW-Ori, 3DPW-
RC and CMU-Syn settings, evaluated using MPJPE.

Ablation Study on Combination Parameter. The combi-
nation parameter α in Eq. (11) of the main paper controls
the balance between global and local representations. We
present the results of our EMPMP model with varying val-
ues of α in the 3DPW-RC setting. As shown in Tab. D.4, the
optimal results for MPJPE, VIM, and APE were achieved
with α = 0.2.
Ablation Study with Fixed-Parameter. To further vali-
date the effectiveness of our architectural design choices,
we conducted a comprehensive ablation study with fixed pa-
rameter count (0.17M parameters) by systematically vary-
ing the number of ME blocks (N), CI blocks (M), and layers
(K) in our EMPMP model. As in Tab. D.3, this approach
ensures that performance improvements are attributed to ar-
chitectural design rather than increased model capacity.

LTFU GTFU LRwGR GRwLR DE MPJPE N/M/K

× ✓ × × × 150.0 0/5/4
✓ × × × × 134.9 40/0/4
✓ ✓ × × × 138.8 25/2/4
✓ ✓ × ✓ × 135.6 16/1/5
✓ ✓ ✓ × × 133.1 18/1/5
✓ ✓ ✓ ✓ × 129.2 18/1/4
✓ ✓ ✓ ✓ ✓ 128.0 16/1/4

Table D.3. Ablation study with fixed-parameter.

α 0 0.1 0.2 0.3 0.4 0.6 0.8 1.0

MPJPE 100.6 102.9 99.5 99.8 102.1 100.3 100.4 101.0
VIM 41.7 42.7 41.3 41.5 42.3 41.5 41.8 42.6
APE 97.3 99.2 96.6 99.4 96.9 97.0 97.4 97.9

Table D.4. Ablation study of the combination parameter α in the
3DPW-RC setting.

E. Experiments on Larger Group.

As we can not access the dataset with 9-15 interacting per-
sons in MRT [6], we follow TBIFormer [4] to synthesize a
10-person dataset (CMU-Mixed10) on CMU-Mocap. As in
following table, our method maintains SOTA in large-group
settings.

Metric MPJPE VIM APE FDE

Frames 10 20 30 10 20 30 10 20 30 10 20 30

TBIF [4] 71 120 160 57 89 110 79 98 104 91 174 238
T2P [3] 68 117 157 56 88 110 76 96 104 86 167 222
Ours 63 108 145 52 81 102 70 89 98 78 157 217

Table E.1. Results on the CMU-Mixed10 dataset.



F. More Experiments on Long Sequences.
To further verify the ability of our model on long sequences,
we add the experiment results with 1/2 ratio on 3DPW-Ori
and 3DPW-RC in Tab. F.1, and add the FDE results with
1s/3s on Mocap-Syn in Tab. F.2. Compared with recent
(2023-2024) works, our model still achieves excellent re-
sults for these experiments.

Datasets 3DPW-Ori 3DPW-RC

Metric MPJPE VIM APE FDE MPJPE VIM APE FDE

TBIF [4] 113 216 81 158 121 163 151 359 99 168 70 111 118 159 123 212
T2P [3] 104 187 73 136 122 167 120 288 95 152 66 97 123 167 96 170
Ours 102 207 77 152 107 148 140 346 85 142 61 93 100 136 109 168

Table F.1. The result of 10-in/20-out frames on the 3DPW dataset.
Each metric records the results of frames 10 and 20 respectively.

Methods TBIF [4] JRT [7] T2P [3] Ours
1s 139 126 116 107
2s 247 226 172 168
3s 339 316 244 243

Table F.2. FDE results in Mocap-Syn on 1s/3s setting.

G. More Qualitative Results
In this section, we provide additional visualization results.
Fig. E.1 presents qualitative results in the CMU-Syn (1s/1s)
setting, while Fig. E.2 showcases results in the CMU-
Syn/MuPoTS (1s/1s) setting. These results highlight the ef-
fectiveness of our EMPMP model, as it generates motion
sequences that exhibit a closer alignment with the ground
truth, thereby preserving realistic motion dynamics.



M
et

ri
c

Settings 3DPW-Ori 3DPW-RC CMU-Syn
AMASS/

3DPW-Ori
AMASS/

3DPW-RC
CMU-Syn/MuPoTS

In/Out Length 1030ms / 900ms 2s / 2s 1s / 1s 1030ms / 900ms 2s / 2s 1s / 1s

JP
E

MRT [6] ′2021 236.4 182.0 197.0 92.2 208.8 169.4 228.3 106.6
SoMoFormer [5] ′2022 207.0 143.7 184.1 86.2 167.9 130.3 200.5 98.5
TBIFormer [4] ′2023 202.8 163.2 214.8 103.4 197.1 149.6 218.0 111.4
JRT [7] ′2023 223.8 154.3 193.7 94.2 196.5 138.1 199.1 102.9
T2P [3] ′2024 190.9 150.4 167.5 84.6 173.4 128.8 199.1 109.7
Ours 184.8 128.1 155.2 79.5 164.1 118.6 193.7 98.3

FD
E

MRT [6] ′2021 192.8 136.6 168.9 69.0 167.2 127.5 178.4 77.2
SoMoFormer [5] ′2022 166.0 95.3 157.7 63.6 133.0 87.2 158.8 72.6
TBIFormer [4] ′2023 156.9 117.8 184.3 79.3 154.5 108.4 168.5 78.7
JRT [7] ′2023 181.3 103.3 162.8 70.5 158.0 88.5 144.7 75.8
T2PF=1 [3] ′2024 165.3 106.9 169.8 73.4 146.6 93.7 164.4 78.6
Ours 148.8 86.9 128.1 57.9 132.2 79.8 150.6 70.6

Table C.3. Results in multiple settings for JPE and FDE. Our EMPMP network achieves the best performance in most comparisons.

Settings 3DPW-Ori 3DPW-RC

Selected Frames 2 4 8 10 14 AVG 2 4 8 10 14 AVG

MRT [6] ′2021 19.6 36.5 68.9 86.4 123.1 66.9 18.5 33.8 59.3 71.5 93.2 55.2
SoMoFormer [5] ′2022 13.0 28.5 59.5 76.4 111.7 57.8 12.3 26.5 49.9 59.5 74.0 44.4
TBIFormer [4] ′2023 17.4 33.5 63.4 78.2 108.5 60.2 15.7 30.3 56.1 67.6 86.7 51.2
JRT [7] ′2023 12.5 29.0 61.6 78.1 111.5 58.5 12.6 28.7 53.6 63.1 77.1 47.0
T2P [3] ′2024 16.6 31.6 59.6 73.0 100.7 56.3 15.2 29.3 51.5 60.9 77.8 46.9
Ours 12.3 26.2 55.1 70.5 102.6 53.3 11.7 24.5 46.3 55.2 69.1 41.3

Settings AMASS/3DPW-Ori AMASS/3DPW-RC

Selected Frames 2 4 8 10 14 AVG 2 4 8 10 14 AVG

MRT [6] ′2021 21.8 39.1 65.1 75.9 94.1 59.2 20.8 36.4 58.2 66.6 79.4 52.3
SoMoFormer [5] ′2022 9.1 21.3 47.5 61.6 91.9 46.3 10.6 22.8 44.5 54.0 68.4 40.0
TBIFormer [4] ′2023 13.3 28.4 58.9 74.7 106.8 56.4 13.7 27.0 52.1 62.8 81.4 47.4
JRT [7] ′2023 9.5 22.1 48.7 62.8 92.8 47.2 9.5 21.7 44.1 53.4 68.8 39.5
T2P [3] ′2024 11.0 23.2 50.8 65.7 96.3 49.4 12.0 24.3 46.4 58.1 71.2 42.4
Ours 10.5 23.1 49.8 64.6 95.2 48.6 9.8 21.6 42.6 51.8 66.2 38.4

Table C.4. Detailed VIM results on the 3DPW dataset across different settings are presented. Our EMPMP demonstrates the best perfor-
mance in the majority of comparisons across three out of the four settings.



M
et

ri
c Settings 3DPW-Ori 3DPW-RC AMASS/3DPW-Ori AMASS/3DPW-RC

Selected Frames 7 14 AVG 7 14 AVG 7 14 AVG 7 14 AVG

JP
E

MRT [6] ′2021 150.0 322.9 236.4 128.1 235.9 182.0 133.5 284.2 208.8 121.7 217.1 169.4
SoMoFormer [5] ′2022 125.3 288.8 207.0 105.0 182.5 143.7 101.0 234.9 167.9 92.3 168.4 130.3
TBIFormer [4] ′2023 132.1 273.5 202.8 116.1 210.3 163.2 124.2 270.0 197.1 105.3 193.9 149.6
JRT [7] ′2023 138.7 308.9 223.8 116.6 192.0 154.3 116.3 276.7 196.5 99.7 176.5 138.1
T2P [3] ′2024 126.9 255.0 190.9 110.2 190.6 150.4 111.1 235.7 173.4 90.2 167.5 128.8
Ours 110.9 258.7 184.8 95.5 160.7 128.1 98.5 229.7 164.1 85.3 151.9 118.6

A
PE

MRT [6] ′2021 103.3 146.9 125.1 102.3 145.0 123.6 95.1 135.6 115.3 90.9 130.7 110.8
SoMoFormer [5] ′2022 92.0 144.7 118.3 91.8 138.0 114.9 74.9 120.2 97.5 78.4 124.4 101.4
TBIFormer [4] ′2023 94.9 137.0 115.9 94.3 136.7 115.5 87.9 132.8 110.3 85.3 130.8 108.0
JRT [7] ′2023 99.0 147.0 123.0 97.6 143.5 120.5 87.0 141.3 114.1 85.4 139.7 112.5
T2P [3] ′2024 92.0 138.3 115.1 92.0 138.3 115.1 83.1 137.1 110.1 82.1 135.3 108.7
Ours 78.0 119.3 98.6 75.4 117.9 96.6 73.8 116.2 95.0 70.9 110.4 90.6

FD
E

MRT [6] ′2021 105.7 280.0 192.8 87.6 185.7 136.6 90.9 243.6 167.2 82.4 172.7 127.5
SoMoFormer [5] ′2022 86.9 245.2 166.0 63.4 127.3 95.3 70.9 195.2 133.0 59.4 115.1 87.2
TBIFormer [4] ′2023 89.5 224.4 156.9 74.7 160.9 117.8 87.1 221.9 154.5 70.4 146.4 108.4
JRT [7] ′2023 99.7 263.0 181.3 74.8 131.9 103.3 83.1 233.0 158.0 60.6 116.4 88.5
T2PF=1 [3] ′2024 84.5 246.1 165.3 68.6 145.3 106.9 75.4 217.9 146.6 63.7 123.7 93.7
Ours 78.3 219.4 148.8 59.0 114.8 86.9 69.6 194.8 132.2 54.1 105.6 79.8

Table C.5. Detailed JPE,APE, and FDE results on the 3DPW dataset across different settings, with our model demonstrating dominant
superiority over the compared methods.

Settings CMU-Syn (2s/2s) CMU-Syn (1s/1s)

Selected Frames 2 6 11 21 30 AVG 2 4 8 10 15 AVG

MRT [6] ′2021 14.6 39.3 58.6 87.8 107.6 61.5 11.4 22.2 39.5 46.4 62.4 36.3
SoMoFormer [5] ′2022 9.8 31.9 51.6 84.6 105.6 56.7 8.4 19.0 37.2 44.9 62.7 34.4
TBIFormer [4] ′2023 14.6 39.0 59.9 93.5 116.4 64.6 11.9 24.2 43.8 51.6 70.4 40.3
JRT [7] ′2023 9.2 29.3 52.7 81.9 109.9 56.6 9.3 20.3 37.6 44.7 58.4 34.0
T2P [3] ′2024 14.4 36.4 52.7 75.1 94.6 54.6 10.4 21.1 37.6 43.5 58.8 34.2
Ours 11.8 32.8 48.4 69.6 88.8 50.2 8.9 18.8 35.0 41.8 57.8 32.4

Settings CMU-Syn/MuPoTS (2s/2s) CMU-Syn/MuPoTS (1s/1s)

Selected Frames 2 6 11 21 30 AVG 2 4 8 10 15 AVG

MRT [6] ′2021 13.3 35.3 61.6 104.2 136.3 70.1 12.8 23.7 43.8 53.3 74.4 41.6
SoMoFormer [5] ′2022 12.3 32.6 56.3 94.2 123.2 63.7 12.1 22.1 41.3 50.5 70.9 39.3
TBIFormer [4] ′2023 14.1 37.0 62.0 99.1 129.4 68.3 13.4 25.1 46.7 56.7 78.2 44.0
JRT [7] ′2023 13.6 34.5 56.4 93.7 125.5 64.7 14.4 26.0 44.0 52.6 69.2 41.2
T2P [3] ′2024 14.5 37.6 60.2 91.8 116.1 64.0 13.6 25.0 44.6 53.6 73.3 42.0
Ours 12.7 32.5 56.3 92.6 120.7 62.9 12.6 23.2 43.2 52.4 71.9 40.6

Table C.6. Detailed VIM results on the CMU-Syn and MuPoTS-3D dataset across different settings. Our model achieves the best average
results across three out of four settings.



M
et

ri
c Settings CMU-Syn (2s/2s) CMU-Syn (1s/1s) CMU-Syn/MuPoTS (2s/2s) CMU-Syn/MuPoTS (1s/1s)

Selected Frames 10 20 30 AVG 3 9 15 AVG 10 20 30 AVG 3 9 15 AVG

JP
E

MRT [6] 2021 125.5 203.8 261.7 197.0 35.6 95.8 145.4 92.2 129.1 231.6 324.4 228.3 41.2 108.7 169.9 106.6
SoMoFormer [5] 2022 105.0 193.6 253.6 184.0 26.9 88.2 143.5 86.2 111.8 205.4 284.4 200.5 37.8 100.6 157.1 98.5
TBIFormer [4] 2023 132.9 223.4 288.2 214.8 38.1 106.8 165.3 103.4 126.6 221.0 306.5 218.0 42.8 114.1 177.5 111.4
JRT [7] 2023 115.1 200.6 265.5 193.7 29.9 97.0 155.7 94.2 117.5 203.0 277.0 199.1 42.1 105.1 161.7 102.9
T2P [3] 2024 113.2 167.9 221.6 167.5 32.3 87.3 134.2 84.6 127.4 203.0 267.1 199.1 46.6 114.3 168.4 109.7
Ours 100.8 154.6 210.4 155.2 27.4 81.5 129.8 79.5 109.3 196.3 275.6 193.7 38.5 101.3 155.3 98.3

A
PE

MRT [6] 2021 82.5 99.0 105.1 95.5 30.5 67.0 82.6 60.0 97.1 143.5 164.8 135.1 38.8 86.6 118.4 81.2
SoMoFormer [5] 2022 68.0 91.6 101.7 87.1 24.2 62.5 78.9 55.2 93.7 137.8 161.1 130.8 38.6 86.1 117.2 80.6
TBIFormer [4] 2023 83.3 100.1 107.3 96.9 32.0 72.1 86.7 63.6 101.8 144.6 166.8 137.7 39.9 90.1 123.2 84.4
JRT [7] 2023 80.5 99.4 107.6 95.8 26.3 68.8 89.9 61.6 93.1 132.2 151.9 125.7 37.2 84.2 113.9 78.4
T2P [3] 2024 79.0 98.7 105.9 94.5 28.2 67.4 84.1 59.9 109.2 155.1 178.9 147.7 44.1 99.7 134.8 92.8
Ours 67.6 86.1 95.9 83.2 24.0 58.4 74.6 52.3 89.0 131.9 153.9 124.9 37.0 81.6 110.0 76.2

FD
E

MRT [6] 2021 94.3 177.2 235.4 168.9 21.7 69.0 116.3 69.0 87.8 177.5 270.1 178.4 28.8 77.2 125.8 77.2
SoMoFormer [5] 2022 77.5 167.5 228.1 157.7 14.2 60.9 115.8 63.6 81.3 159.7 235.4 158.8 28.4 73.4 116.2 72.6
TBIFormer [4] 2023 99.8 193.2 259.9 184.3 24.1 78.1 135.8 79.3 84.7 169.7 251.2 168.5 29.9 78.1 128.2 78.7
JRT [7] 2023 85.8 169.3 233.5 162.8 17.3 68.7 125.6 70.5 76.3 144.4 213.4 144.7 32.8 76.2 118.6 75.8
T2PF=1 [3] 2024 85.8 178.4 245.2 169.8 17.8 70.8 131.7 73.4 90.5 166.8 235.9 164.4 30.3 79.9 125.7 78.6
Ours 72.3 127.3 184.8 128.1 15.0 55.9 103.0 57.9 78.4 151.1 222.3 150.6 27.4 70.4 114.0 70.6

Table C.7. Detailed JPE,APE, and FDE results on the CMU-Syn and MuPoTS-3D dataset across different settings, and our model present
dominant superiority over most of the compared methods.

Figure B.2. Attention-based architectures used in our ablation study. Our ME block and CI block are replaced with Attention-based
Temporal Learning block containing Multi-Head Attention (Self-Attention) module and Attention-based Interaction block containing Cross
Attention module,respectively.



Figure E.1. Qualitative results in the CMU-Syn (1s/1s) setting. Different colors indicate different individuals. The model predicts 15 frames
based on the input of 15 frames.

Figure E.2. Qualitative results in the CMU-Syn/MuPoTS (1s/1s) setting. Different colors indicate different individuals. The model predicts
15 frames based on the input of 15 frames.
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