Efficient Multi-Person Motion Prediction by Lightweight Spatial and Temporal
Interactions

Supplementary Material

A. Additional Details on Dataset and Metric

A.1l. Dataset Sources

All datasets utilized in this study are sourced from publicly
available open-source repositories, including the CMU-
Mocap, MuPoTS-3D, and 3DPW datasets. For the 3DPW
dataset, we adhere to the protocol outlined in the SoMoF
Benchmark [1, 2], which has been used in previous stud-
ies [5, 7]. For the 3DPW-RC dataset, we apply the same
scripts as in [7] to remove camera movement, thereby en-
hancing the realism of human motion. For the CMU-Mocap
and MuPoTS-3D datasets, we synthesize data based on the
original datasets, following approach in [6]. Since synthe-
sized datasets from prior works are not publicly available,
all experiments were conducted on our synthesized versions
by running official codes of compared methods.

A.2. Metric Formulations

Given the predicted motion Y = {37} € R37*F*T" for
P persons across T” time frames with J joints per person,
along with the corresponding ground truth Y = {§?7} e
R3/XPXT" the following metrics are used for evaluation.
MPJPE. The Mean Per Joint Position Error (MPJPE) mea-
sures the overall joint prediction accuracy by averaging er-
rors across all time frames:
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VIM. The Visibility-Ignored Metric (VIM) focuses on the
average joint error for a specific time frame, and the VIM
score at timestep ¢ is given by:
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JPE. The Joint Precision Error (JPE) assesses both global
and local joint predictions using the mean Lo distance of all
joints for timestep ¢:
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APE. The Aligned Mean Per Joint Position Error (APE)
evaluates the forecasted local motion by computing the Lo
distance for each joint, averaged across all joints at a given

timestep ¢, with global displacement removed by subtract-
ing the hip joint:
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FDE. The Final Distance Error (FDE) quantifies the accu-
racy of the forecasted global trajectory by computing the Lo
distance for a specific timestep t:
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These metrics provide a comprehensive evaluation of the
accuracy for 3D motion prediction task, capturing both local
joint-wise pose errors and global trajectory deviations.

B. Additional Network and Training Details

Details on PIPS and IPIPS Stages. In order to main-
tain the invariance of our model to the order of individuals,
we introduce Permutation-Invariant Person Sorting (PIPS).
Given the input X € R3/XPXT we calculate the sum of
distances between each individual and all others as:
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We then sort individuals in descending order based on these
values, modifying the input X. After processing the input
through the model to obtain output Y, we apply Inverse
PIPS to recover the original person order, resulting in the
final output Y € R37*P*T" These two stages ensures that
the output of our model is unchanged for different orders of
individuals in the same scene as the input.

Network for Pre-training. For the experiments in the set-
tings of AMASS/3DPW-Ori and AMASS/3DPW-RC, the net-
work is pre-trained on the AMASS dataset and fine-tuned
on the 3DPW dataset. Given that the number of parameters
has a significant impact on network performance, especially
for lightweight architectures, we utilize a model with 0.65M
parameters to increase its capacity. This is achieved by in-
corporating additional spatial feature updates, as illustrated
in Fig. B.1. Specifically, we introduce Local/Global Spatial
Feature Update, which extend the Local/Global Temporal
Feature Update. These new components maintain a similar
architectural structure to the original components but op-
erate along the spatial dimension rather than the temporal



dimension. As demonstrated in Tab. 1 of the main paper,
our model with 0.65M parameters achieves the best perfor-
mance for the AMASS/3DPW-RC setting and competitive
results for the AMASS/3DPW-Ori setting.

Details for Pre-training Settings. For the experiments in
the settings of AMASS/3DPW-Ori and AMASS/3DPW-RC,
we pre-train our network on AMASS dataset for 100 epochs
with an initial learning rate of 1 x 10~%, which decays by
a factor of 0.8 every 10 epochs. The strategy employed for
network fine-tuning is the same as described in Sect. 3.5 of
the main paper.

Details on Attention-based Designs. In Sect. 4.3 of the
main paper, we compared our architecture with Attention-
based alternatives by replacing our ME block and CI block
with two distinct Attention-based blocks: one employing
Multi-Head Attention (Self-Attention) for local/global tem-
poral feature update and the other utilizing Cross Attention
for local/glocal refinement. The detailed architectures are
illustrated in Fig. B.2. Our results in Tab. 5 of the main pa-
per demonstrate that our proposed model outperforms tra-
ditional Attention-based architectures, which have more pa-
rameters and require greater computational resources.

C. More Experimental Results

In addition to the results evaluated using MEJPE, VIM, and
APE presented in the main paper, we provide additional re-
sults based on the metrics of JPE and FDE in this section.
We also include the results across different key frames for
VIM, JPE, APE, and FDE, along with an analysis of the
computational cost.

Results Evaluated by JPE and FDE. In Tab. C.3, we
present the results evaluated using the JPE and FDE metrics
across all the settings discussed in the main paper, along
with comparisons to previous works. Our EMPMP model
achieves the best JPE results, demonstrating significant su-
periority over the other methods. It also performs excep-
tionally well in FDE, ranking first in seven out of eight
evaluations. Notably, the T2P model [3] predicts multiple
trajectories (F') and for a fair comparison, we compute the
FDE with F' = 1, while using F' = 3 for the other metrics.
Detailed Results Across Key Frames. In the main paper,
for all models evaluated using VIM, JPE, APE, and FDE,
we report their average results across key frames. Addi-
tionally, we provide the detailed results for each individ-
ual frame, following the frame selection scheme shown in
Tab. C.1. For the VIM metric on the 3DPW dataset, we
adopt the same frame selection scheme as used in [5, 7] to
ensure consistency and fair comparisons. For other datasets
and metrics, frames are selected at reasonable intervals to
ensure comprehensive evaluation. Tab. C.4 presents the de-
tailed VIM results across multiple settings of the 3DPW
dataset, while Tab. C.5 reports the corresponding JPE, APE,
and FDE results for the same dataset. Similarly, Tab. C.6

shows the VIM results for various settings of the CMU-Syn
and MuPoTS-3D datasets, and Tab. C.7 provides the JPE,
APE, and FDE results for these datasets. These tables pro-
vide detailed results for specific key frames and their av-
erage values, where our model achieves dominant superior
performance in most comparisons, proving its effectiveness
through a comprehensive evaluation of performance metrics
across different timesteps.

Datasets | 3DPW | CMU-Syn & MuPoTS
Out Length | 14frames (900ms) | 30frames (2s) | 15frames (1s)
VIM | 2.4,8,10,14 | 2,6,11,21,30 | 2,4,8,10, 15
JPE&APE&FDE | 7,14 | 10,2030 | 3,915

Table C.1. Frame selection scheme for different datasets.

Comparison on Computational Cost. In Tab. C.2, we
present the detailed computational costs of our EMPMP
model and the compared methods, including GPU mem-
ory usage, computational FLOPs, and the number of pa-
rameters. Our model demonstrates superior performance
across various settings while maintaining a significantly
lower number of parameters and FLOPs.

Metrics Memory FLOPs Params
(MB) G) M)
MRT [6] '202 2281 27.55 6.29
SoMoFormer [5] '2022 6308 113.37 12.91
TBIFormer [4] 2023 2826 15.64 7.31
JRT [7] '2023 15544 767.74 3.68
T2P [3] 2024 4304 51.67 4.60
Ours 2674 1.67 0.17

Table C.2. Comparisons of computational cost for different mod-
els in the CMU-Syn (2s/2s) setting.

D. Additional Ablation Study

Effectiveness of Learned Affine Transformations. In the
CI block, we incorporate both scale and translation for lo-
cal representation refinement, while employing translation
alone for global representation refinement. To assess the ef-
fectiveness of this design, we conducted an ablation study
exploring various transformation choices for local/global
representation refinement. As presented in Tab. D.1, the
model that utilizes scale and translation for local refinement,
and translation for global refinement, yields the best perfor-
mance compared to alternative configurations.

Ablation Study on Loss Function. Our loss function com-
prises two components: mean joint loss and velocity loss.
As demonstrated in Tab. D.2, the network that excludes ve-
locity loss performs worse in the 3DPW-Ori, 3DPW-RC,
and CMU-Syn settings, thereby highlighting the necessity
of incorporating velocity loss.
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Figure B.1. Architectural modifications for our 0.65M-parameter EMPMP involve enhancing the Local/Global Temporal Feature Update
(left) with the addition of the Local/Global Spatial Feature Update (right). These modifications update features along the spatial dimension,

thereby increasing the model’s expressive capacity.

Local Refinement ‘ Global Refinement ‘ MPJPE LTFU GTFU LRwGR GRwLR DE MPJPE N/M/K
Scale ‘ Translation ‘ Scale ‘ Translation ‘ X v x x x 150.0 0/5/4
v X X X X 134.9 40/0/4
X v v v 129.9 v v X X X 138.8  25/2/4
v X v v 129.4 v v X v X 135.6 16/1/5
v v X v 128.0 v v v X X 133.1 18/1/5
v v v X 131.3 v v v v X 129.2 18/1/4
v v v v 129.0 v v v v v 128.0 16/1/4
Table D.1. Ablation study on learned affine transformations for Table D.3. Ablation study with fixed-parameter.
local and global representation refinement.
a a e 0 01 02 03 04 06 08 1.0
Settings 3DOPW 3?;2&, CMU-Syn
n MPJPE | 100.6 1029 99.5 99.8 102.1 100.3 1004 101.0
In/Out Length | 1030ms/900ms | 2s2s | Is/ls VIM | 41.7 427 413 415 423 415 418 426
EMPMP-w/o-LV ¢! 137.7 103.7 130.0 74.7 APE | 97.3 992 96.6 994 969 97.0 974 979
EMPMP 131.8 99.5 128.0 73.5

Table D.2. Ablation study on velocity loss in 3DPW-Ori, 3DPW-
RC and CMU-Syn settings, evaluated using MPJPE.

Ablation Study on Combination Parameter. The combi-
nation parameter « in Eq. (11) of the main paper controls
the balance between global and local representations. We
present the results of our EMPMP model with varying val-
ues of o in the 3DPW-RC setting. As shown in Tab. D .4, the
optimal results for MPJPE, VIM, and APE were achieved
with a = 0.2.

Ablation Study with Fixed-Parameter. To further vali-
date the effectiveness of our architectural design choices,
we conducted a comprehensive ablation study with fixed pa-
rameter count (0.17M parameters) by systematically vary-
ing the number of ME blocks (N), CI blocks (M), and layers
(K) in our EMPMP model. As in Tab. D.3, this approach
ensures that performance improvements are attributed to ar-
chitectural design rather than increased model capacity.

Table D.4. Ablation study of the combination parameter « in the
3DPW-RC setting.

E. Experiments on Larger Group.

As we can not access the dataset with 9-15 interacting per-
sons in MRT [6], we follow TBIFormer [4] to synthesize a
10-person dataset (CMU-Mixed10) on CMU-Mocap. As in
following table, our method maintains SOTA in large-group
settings.

Metric | MPJPE VIM APE FDE
Frames |10 20 30 [10 20 30 [10 20 30 [10 20 30

TBIF [4]|71 120 160|57 89 110|79 98 104 (91 174 238
T2P [3] |68 117 157|56 88 11076 96 104 |86 167 222
Ours 63 108 145|52 81 102|70 89 98 |78 157 217

Table E.1. Results on the CMU-Mixed10 dataset.




F. More Experiments on Long Sequences.

To further verify the ability of our model on long sequences,
we add the experiment results with 1/2 ratio on 3DPW-Ori
and 3DPW-RC in Tab. F.1, and add the FDE results with
1s/3s on Mocap-Syn in Tab. F.2. Compared with recent
(2023-2024) works, our model still achieves excellent re-
sults for these experiments.

Datasets | 3DPW-Ori | 3DPW-RC
Metric |MPJPE| VIM | APE | FDE |MPIPE| VIM | APE | FDE

TBIF [4]]113 216|181 158|121 163|151 35999 168 |70 111|118 159|123 212
T2P [3] |104 187|73 136|122 167|120 288|95 152|66 97 |123 167| 96 170
Ours 102 207|77 152|107 148|140 346|85 14261 93 |100 136|109 168
Table F.1. The result of 10-in/20-out frames on the 3DPW dataset.
Each metric records the results of frames 10 and 20 respectively.

Methods | TBIF [4] JRT[7] T2P[3] Ours

Is 139 126 116 107
2s 247 226 172 168
3s 339 316 244 243

Table F.2. FDE results in Mocap-Syn on 1s/3s setting.

G. More Qualitative Results

In this section, we provide additional visualization results.
Fig. E.1 presents qualitative results in the CMU-Syn (1s/1s)
setting, while Fig. E.2 showcases results in the CMU-
Syn/MuPoTS (1s/1s) setting. These results highlight the ef-
fectiveness of our EMPMP model, as it generates motion
sequences that exhibit a closer alignment with the ground
truth, thereby preserving realistic motion dynamics.



1) . . AMASS/ AMASS/

g Settings 3DPW-Ori | 3DPW-RC CMU-Syn 3DPW-Ori | 3DPW-RC CMU-Syn/MuPoTS
In/Out Length 1030ms / 900ms 2s/2s Is/1s 1030ms / 900ms 2s/2s Is/1s
MRT [6] 2021 236.4 182.0 197.0 922 208.8 169.4 2283 106.6
SoMoFormer [5] '2022 207.0 143.7 184.1 86.2 167.9 130.3 200.5 98.5

E TBIFormer [4] '2028 202.8 163.2 214.8 103.4 197.1 149.6 218.0 1114

= JRT[7] 2023 2238 154.3 193.7 94.2 196.5 138.1 199.1 102.9
T2P [3] /2024 190.9 150.4 167.5 84.6 173.4 128.8 199.1 109.7
Ours 184.8 128.1 155.2 79.5 164.1 118.6 193.7 98.3
MRT [6] 2021 192.8 136.6 168.9 69.0 167.2 127.5 178.4 77.2
SoMoFormer [5] '2022 166.0 95.3 157.7 63.6 133.0 87.2 158.8 72.6

g TBIFormer [4] '2028 156.9 117.8 184.3 79.3 154.5 108.4 168.5 78.7

& JRT[7] 2028 181.3 103.3 162.8 70.5 158.0 88.5 144.7 75.8
T2PF=1 [3] /2024 165.3 106.9 169.8 73.4 146.6 93.7 164.4 78.6
Ours 148.8 86.9 128.1 57.9 132.2 79.8 150.6 70.6

Table C.3. Results in multiple settings for JPE and FDE. Our EMPMP network achieves the best performance in most comparisons.

Settings \ 3DPW-Ori \ 3DPW-RC

Selected Frames ‘ 2 4 8 10 14 AVG ‘ 2 4 8 10 14 AVG
MRT [6] "202! 196 365 689 864 1231 669 | 185 338 593 715 932 552
SoMoFormer [5] 2°22 | 13.0 285 595 764 1117 578 | 123 265 499 595 740 444
TBIFormer [4] 22 | 17.4 335 634 782 1085 602 | 157 303 561 67.6 867 512
JRT [7] 202 125 290 616 781 1115 585 | 126 287 536 63.1 771 470
T2P [3] 2024 166 316 596 73.0 1007 563 | 152 293 515 609 778 469
Ours 123 262 551 705 1026 533 | 1.7 245 463 552 69.1 413
Settings \ AMASS/3DPW-Ori \ AMASS/3DPW-RC

Selected Frames | 2 4 8 10 14 AVG| 2 4 8 10 14 AVG
MRT [6] 202! 218 391 651 759 941 592 | 208 364 582 666 794 523
SoMoFormer [5] 2°22 | 9.1 213 47.5 616 919 463 | 106 228 445 540 684 400
TBIFormer [4] '2°2* | 13.3 284 589 747 1068 564 | 137 270 521 628 814 474
JRT [7] 2023 95 221 487 628 928 472 | 95 217 441 534 688 395
T2P [3] 202 110 232 508 657 963 494 | 120 243 464 581 712 424
Ours 105 231 498 646 952 486 | 98 216 426 518 662 384

Table C.4. Detailed VIM results on the 3DPW dataset across different settings are presented. Our EMPMP demonstrates the best perfor-
mance in the majority of comparisons across three out of the four settings.



£ Settings \ 3DPW-Ori \ 3DPW-RC | AMASS/3DPW-Ori | AMASS/3DPW-RC
S Selected Frames |7 14 AVG | 7 14 AVG | 7 14 AVG | 7 14 AVG
MRT [6] "202t 1500 3229 2364 | 128.1 2359 1820 | 133.5 2842 2088 | 121.7 217.1 1694
SoMoFormer [5] ‘222 | 1253 2888 207.0 | 105.0 182.5 1437 | 101.0 2349 1679 | 923 1684 1303
@ TBIFormer [4] 2% | 132.1 2735 2028 | 116.1 2103 1632 | 1242 2700 197.1 | 1053 1939 149.6
= JRT[7] 202 138.7 3089 2238 | 1166 1920 1543 | 1163 2767 1965 | 99.7 1765 138.1
T2P [3] 2024 1269 2550 1909 | 1102 190.6 1504 | 111.1 2357 1734 | 902 1675 12838
Ours 1109 2587 1848 | 955 160.7 1281 | 985 2297 1641 | 853 1519 118.6
MRT [6] "202! 1033 1469 1251 | 1023 1450 1236 | 951 1356 1153 | 909 1307 1108
SoMoFormer [5] 222 | 92.0 1447 1183 | 91.8 1380 1149 | 749 1202 975 | 784 1244 1014
& TBIFormer [4] 2023 949 1370 1159 | 943 1367 1155 | 879 1328 1103 | 853 1308 108.0
< JRT[7] 2028 99.0 1470 1230 | 97.6 1435 1205 | 87.0 1413 1141 | 854 1397 1125
T2P [3] 202 920 1383 1151 | 920 1383 1151 | 831 137.1 110.1 | 821 1353 1087
Ours 780 1193 986 | 754 1179 96.6 | 738 1162 950 | 709 1104 90.6
MRT [6] 202! 1057 280.0 1928 | 87.6 1857 1366 | 90.9 2436 1672 | 824 1727 1275
SoMoFormer [5] ‘222 | 86.9 2452 166.0 | 634 1273 953 | 709 1952 1330 | 594 1151 872
= TBIFormer [4] 202 895 2244 1569 | 747 1609 117.8 | 87.1 2219 1545 | 704 1464 1084
& JRT[7] 2028 99.7 2630 1813 | 748 1319 1033 | 831 2330 1580 | 60.6 1164 885
T2PF=1 [3] 2024 845 2461 1653 | 68.6 1453 1069 | 754 2179 1466 | 637 1237 937
Ours 783 2194 1488 | 59.0 1148 869 | 69.6 1948 1322 | 541 1056 79.8

Table C.5. Detailed JPE,APE, and FDE results on the 3DPW dataset across different settings, with our model demonstrating dominant
superiority over the compared methods.

Settings \ CMU-Syn (25/2s) \ CMU-Syn (1s/1s)
Selected Frames | 2 6 11 21 30 AVG | 2 4 8 10 15 AVG
MRT [6] '202* 146 393 586 878 107.6 615 | 114 222 395 464 624 363

SoMoFormer [5] '2°22 | 9.8 319 516 846 1056 567 | 84 190 372 449 627 344
TBIFormer [4] '2028 146 39.0 599 935 1164 646 | 119 242 438 516 704 403

JRT [7] '2028 92 293 527 819 1099 566 | 93 203 376 447 584 340
T2P [3] /2024 144 364 527 751 946 546 | 104 21.1 376 435 588 342
Ours 118 328 484 696 888 502 | 89 188 350 418 578 324
Settings \ CMU-Syn/MuPoTS (2s/2s) \ CMU-Syn/MuPoTS (1s/1s)

Selected Frames | 2 6 11 21 30 AVG | 2 4 8 10 15 AVG
MRT [6] 2021 133 353 61.6 1042 1363 70.1 | 128 237 438 533 744 416

SoMoFormer [5] 2922 | 123 326 563 942 1232 637 | 121 221 413 50.5 709 393
TBIFormer [4] '2023 141 370 620 991 1294 683 | 134 251 4677 567 782 440

JRT [7] 2023 13.6 345 564 937 1255 647 | 144 260 440 526 692 412
T2P [3] 2024 145 376 602 91.8 1161 640 | 13.6 250 446 53,6 733 420
Ours 127 325 563 926 1207 629 | 126 232 432 524 719 40.6

Table C.6. Detailed VIM results on the CMU-Syn and MuPoTS-3D dataset across different settings. Our model achieves the best average
results across three out of four settings.



2 Settings \ CMU-Syn (2s/2s) | CMU-Syn(Is/ls) | CMU-Syn/MuPoTS (2s/2s) | CMU-Syn/MuPoTS (1s/1s)
= Selected Frames |10 20 30 AVG| 3 9 I5 AVG| 10 20 30 AVG| 3 9 15 AVG
MRT [6] 22t 1255 203.8 2617 197.0]356 958 1454 922 |129.1 231.6 324.4 2283|412 1087 169.9 106.6
SoMoFormer [5] 22 | 105.0 193.6 253.6 184.0 |26.9 882 1435 862 | 111.8 2054 2844 200.5|37.8 100.6 157.1 98.5
@ TBIFormer [4]* | 1329 2234 2882 2148 |38.1 1068 1653 10341266 221.0 3065 2180|428 1141 1775 1114
= JRT [7] 2= 115.1 200.6 265.5 1937|299 97.0 1557 942 | 117.5 203.0 277.0 199.1 | 42.1 105.1 161.7 102.9
T2P [3] 202 1132 167.9 221.6 167.5|32.3 873 1342 84.6 |127.4 203.0 267.1 199.1 | 46.6 114.3 168.4 109.7
Ours 100.8 154.6 2104 1552|274 815 1298 79.5 |109.3 1963 275.6 193.7 385 101.3 1553 98.3
MRT [6] 202t 825 99.0 105.1 955|305 67.0 826 60.0 | 97.1 1435 1648 135.1|388 866 1184 81.2
SoMoFormer [5]22 | 68.0 91.6 101.7 87.1 |242 625 789 552 | 937 137.8 161.1 130.8|38.6 86.1 1172 80.6
2 TBIFormer [4]* | 833 100.1 107.3 969 320 721 867 636 1018 1446 1668 137.7 399 90.1 1232 844
< JRT[7] 2 80.5 994 107.6 958 | 263 68.8 899 61.6 | 93.1 1322 1519 1257|372 842 1139 784
T2P [3] 202 79.0 987 1059 945 [282 674 841 599 |109.2 155.1 178.9 147.7 |44.1 99.7 1348 928
Ours 676 861 959 832 (240 584 746 523 | 89.0 1319 1539 1249 37.0 81.6 110.0 762
MRT [6] 202t 943 177.2 2354 1689|217 69.0 1163 69.0 | 87.8 177.5 270.1 1784|288 772 1258 77.2
SoMoFormer [5] 222 | 77.5 167.5 228.1 157.7| 142 609 1158 63.6 | 81.3 159.7 2354 1588|284 734 1162 726
2 TBIFormer [4]*% | 99.8 1932 2599 1843|241 781 1358 79.3 | 847 1697 2512 1685|299 78.1 1282 787
& JRT[7] 22 858 169.3 2335 162.8|17.3 687 1256 705 | 763 1444 2134 1447|328 762 1186 758
T2Pr-1 [3] 202 85.8 178.4 2452 169.8|17.8 70.8 131.7 734 | 90.5 166.8 2359 1644|303 799 1257 78.6
Ours 723 1273 184.8 1281|150 559 103.0 57.9 | 784 151.1 2223 1506 27.4 704 1140 70.6

Table C.7. Detailed JPE,APE, and FDE results on the CMU-Syn and MuPoTS-3D dataset across different settings, and our model present
dominant superiority over most of the compared methods.

Alternative Attention-based Architectures
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Figure B.2. Attention-based architectures used in our ablation study. Our ME block and CI block are replaced with Attention-based
Temporal Learning block containing Multi-Head Attention (Self-Attention) module and Attention-based Interaction block containing Cross
Attention module,respectively.
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