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A. Notations
We first list the notations for key concepts in our paper.

Table 10. Notations.

Notations Descriptions
fθ A neural network with parameters θ.
θpre Pre-trained model parameters.
θk Fine-tuning parameters for task k.
θm Model merging backbone network.
vk Task vector for task k, vk = θk − θpre.

M(vk, d)
The top 100d% parameters with the most
significant changes corresponding to vk.

µk The rescaling coefficient of the expert of task k
ek Lightweight task expert for task k, ek = µkM(vk, d).
θ∗ The backbone with the corresponding expert.
G(·) Transformation operations on parameters.
λk Merging coefficient of the model parameters for task k.
x ∈ Rm The input of the neural network.
Y ∈ Rn The output of the neural network.

B. Proof
In this section, we provide a proof for Theorem 5.1. We

begin by introducing the notation used in this proof.

B.1. Notations and preliminaries
To illustrate the proof, let’s consider two fine-tuned mod-

els with parameters θA and θB , For clarity, we focus on
a single-layer MLP (without activation functions), though
we will explain at the end how our proof generalizes to all
cases. The merged result is given by: θm = λ1G(θA) +
λ2G(θB), where G(·) represents a transformation operation
applied to the parameters. Assume that θA corresponds to
task input XA, and θB corresponds to task input XB .

The goal is to prove that, without additional storage or
extra training for θA and θB , simply storing θm cannot per-
fectly retain the capabilities of both θA and θB .

B.2. Details of proof
Next, we will analyze the cases separately.

Without transformations. Assume that we do not apply
transformations to the output of the merged network. the
output of the model fθ can be expressed as:

outputf = θx (5)

Suppose θm can perfectly retain the capabilities of both
θA and θB without introducing new knowledge. That is, for
∀xA ∈ XA, xB ∈ XB , we have:

θmxA = θAxA, θmxB = θBxB . (6)

Then we have:

[λ1G(θA) + λ2G(θB)]xA = θAxA, (7)
[λ1G(θA) + λ2G(θB)]xB = θBxB . (8)

Assume that ∃ xm = µ1xA + µ2xB ∈ XA, where
µ1, µ2 ∈ N. Substituting, we can obtain:

θmxm = θAxm (9)
⇒ θm(xA − xm) = θA(xA − xm) (10)
⇒ θm[(1− µ1)xA − µ2xB ] (11)

= θA[(1− µ1)xA − µ2xB ] (12)
⇒ µ2θmxB = µ2θAxB (13)
⇒ µ2θBxB = µ2θAxB (14)

Due to:
µ2θmxB = µ2θBxB (15)

Thus, if the Eq. 14 and Eq. 15 holds for ∀xA ∈ XA, xB ∈
XB , then µ2 = 0. Therefore, we have:

∀µ2 ̸= 0, ∄ xm = µ1xA + µ2xB ∈ XA (16)

Eq. 16 indicates that XA is not continuous. However, we
usually consider the input space of the model to be contin-
uous. Even if it is discontinuous, we expect the model to be
robust to slight perturbations in the input.

Thus, the assumption that θm can perfectly retain θA and
θB without extra data or training does not hold in this case.
With transformations. Assuming we apply certain trans-
formations to the output of the merged network, the output
of the model fθ can be expressed as:

outputf = h(θx), (17)

where h(·)represents a transformation applied to the output.
By the universal approximation theorem, h(·) can be ap-

proximated by a two-layer MLP with sigmoid activation.
Then, assuming θm can perfectly retain the capabilities of
both θA and θB . Then for ∀xA ∈ XA, xB ∈ XB , we have:

W2[sigmoid(W1θmxA)] = θAxA (18)
W2[sigmoid(W1θmxB)] = θBxB . (19)

Substituting, we obtain:

W2

1 + e−W1θmxA
= θAxA, (20)

W2

1 + e−W1θmxB
= θBxB . (21)



Then we have:

W2 = θAxA(1 + e−W1θmxA) (22)

= θBxB(1 + e−W1θmxB ). (23)

Thus, we can obtain the following equation:

θAxA(e
W1θmxA + 1)eW1θmxB (24)

= θBxB(e
W1θmxB + 1)eW1θmxA . (25)

Therefore,

(θAxA − θAxB)(e
W1θmxBeW1θmxA + eW1θmxB ) (26)

= θBxB(e
W1θmxB + eW1θmxA) (27)

Therefore, based on Equa. 22 and Equa. 26, since they hold
for ∀xA ∈ XA, xB ∈ XB , at least one of W1 or W2 can be
expressed as Φ(θA, θB), where Φ represents a function.

In other words, only by additionally storing part of the
information from θA or θB and processing θm at the output
can θm perfectly retain the capabilities of both θA and θB .
Therefore, the assumption that θm can perfectly retain both
θA and θB does not hold in this case.

Next, we briefly outline the rationale for extending this
result to all layers of a neural network. Our assumptions
involve only a single layer of the neural network, which al-
ready cannot perfectly retain capabilities without introduc-
ing new data. Therefore, it is even less feasible for the entire
network to achieve this. Thus, this extension is reasonable.

In summary, the proposition is proven.

C. Reproducibility
C.1. Datasets
Merging 8 ViTs. We use ViT-B/32 and ViT-L/14 as pre-
trained models, and fine-tune them on 8 image classification
datasets (SUN397, Cars, RESISC45, EuroSAT, SHVN, GT-
SRB, MNIST, and DTD), then merge the models and test
their performance. Configuration details follow [20].
Merging 30 ViTs. We use ViT-B/16 as the pre-trained
model and test its merging performance on 30 image
datasets. The datasets include MNIST, CIFAR-10, Vegeta-
bles, Food-101, Kvasir-v2, Cars, Intel Images, EuroSAT,
Weather, Cats and Dogs, MangoLeafBD, Beans, CIFAR-
100, GTSRB, SHVN, Dogs, Fashion MNIST, Oxford-IIIT-
Pet, Landscape Recognition, Flowers Recognition, STL-
10, CUB-200-2011, EMNIST, DTD, RESISC45, SUN397,
KenyanFood13, Animal-10N, Garbage Classification, and
Fruits-360. These datasets cover a wide range of major im-
age categories. Configuration details follow [20].
Merging Medium-sized Language Models. We use
RoBERTa as the pre-trained model, fine-tune it on 8 clas-
sification task datasets from GLUE benchmark for model
merging, including CoLA, SST-2, MRPC, STS-B, QQP,

MNLI, QNLI, and RTE. CoLA is evaluated with the
Matthews correlation coefficient, STS-B with the average
of the Pearson and Spearman correlation coefficients, and
the others by accuracy. Details follow [20].
Merging PEFT Models. In this section, we conduct
two experiments. The first uses T0-3B as the pre-trained
model and IA3 as the PEFT method, fine-tuned and merged
on RTE, CB, Winogrande, WiC, WSC, COPA, H-SWAG,
Story Cloze, and ANLI (R1 to R3). Details can be found
in [20]. The second part uses Qwen-14B as the pre-trained
model and LoRA as the PEFT method. We fine-tune and
merging on three generative tasks: MMLU, TruthfulQA,
and BBQ. Configuration details can be found in [29].
Merging Large Language Models. We use LLaMa2-13B
as the pre-trained model and apply fine-tuned results from
WizardLM, WizardMath, and WizardCoder-Python for in-
struction following, math, and code tasks, respectively. We
perform merging and test the model on three datasets: Al-
pacaEval (instruction following task), GSM8K (math task),
and MBPP (code generation task). Details follow [53].
Merging Multi-Modal Models. We use BEiT3 as the pre-
trained model, fine-tune it on five multi-modal datasets,
and test model merging performance. The datasets are
ImageNet-1k (Image Classification), VQAv2 (Visual Ques-
tion Answering), NLVR2 (Visual Reasoning), COCO Cap-
tioning (Image Captioning), and COCO Retrieval (Image-
Text Retrieval). COCO Captioning is evaluated using
BLEU4, CIDEr, METEOR, and ROUGE-L, while the other
tasks are measured by accuracy. Details follow [20].

C.2. Baselines
Individual. Solve each task with its fine-tuned model, but
this requires storing separate models for each task, leading
to significant storage overhead.
Traditional MTL. Train a model on data from all tasks,
which incurs high training costs and data privacy issues.
Weight Averaging. Average the parameters for merging.
The method is simple, but it faces great performance loss.
Fisher Merging [33]. Use Fisher information matrices to
assess parameter importance and determine merging co-
efficients. However, this requires calculating the matrix
for each model, demanding high computational resources,
making it unsuitable for edge deployment.
Task Arithmetic [21]. Define task vectors as the merging
target. For task k, the task vector is defined as vk = θk −
θpre, where θpre is the pre-trained model parameters, and θk
is the fine-tuned parameters for task k. The merging process
can be represented as θm = θpre + λ

∑K
i=1 vi, where λ

is the merging coefficient. This method suffers significant
performance degradation due to unaddressed task conflicts.
Ties-Merging [48]. Attempts to resolve parameter conflicts
during model merging by eliminating redundancy and sign
conflicts. However, resolving parameter conflicts is insuffi-



cient to address task conflicts, resulting in performance loss.
Breadcrumbs [7]. Discards parameters with the largest and
smallest absolute values as redundant, negatively impacting
model merging. This approach is simple, but it shows a
significant performance decline on certain tasks.
PCB-Merging [12]. Uses internal balancing to measure pa-
rameter importance within tasks and mutual balancing to
assess parameter similarity across tasks, discarding redun-
dant parameters and adjusting merging coefficients. This
approach requires considerable computational resources,
whereas our FR-Merging approach requires less computa-
tional power while yielding better results.
RegMean [23]. A weighted merging model based on a
closed-form solution for the merging problem, aiming to
maximize the similarity between the merged model and
each pre-merged model on the same input. Requires inner
product data from training. Since this method relies on data
information, which is typically not provided by the model
provider, its applicability is limited to specific scenarios.
AdaMerging [52]. Uses an unsupervised approach to
learn the merging coefficient for each task vector or layer.
AdaMerging++ additionally applies Ties-Merging before
calculating the merging coefficient. This method is lim-
ited to classification tasks and requires certain training re-
sources, making it unsuitable for edge deployment.
DARE [53]. DARE randomly discards a large portion of
task vector parameters before merging, potentially reducing
parameter interference among models. This method is sim-
ple, but due to the lack of further optimization in the merg-
ing, it suffers from significant performance degradation.
EMR-Merging [20]. Proposes retaining a mask matrix and
rescale parameters for each model. During inference, the
mask matrix and rescaling parameters are selected to re-
cover performance. This method cannot further improve
performance because it does not optimize the merged back-
bone. Additionally, since a mask must be stored for each
task, it requires considerable storage space. In contrast, our
method optimizes these aspects simultaneously.
Twin-Merging [29]. Proposes saving an expert module ex-
tracted by SVD from the original parameters for each task,
which is dynamically added during inference. This method
does not optimize the merged backbone, resulting in sub-
optimal performance. It requires storing a large number of
parameters when constructing task experts. In contrast, our
proposed method optimizes both aspects, making it suitable
for resource-constrained edge deployment scenarios.

C.3. Details

In this section, we discuss the details of the experiments.
All experiments, except for the speed tests, are conducted
on eight NVIDIA RTX-3090 GPUs. The inference speed
tests are performed using a single RTX-3090 GPU.
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Figure 6. The relationship between the merging performance of
ViT-B-32 and the variance of frequency domain amplitude power.
Normalized accuracy is the ratio of merged model performance to
fine-tuned model performance on the same task.

D. More Discussions and Future Directions
In this section, we first provide a more detailed discus-

sion of task interference in the frequency domain in D.1.
Next, we present the experimental results of FR-Merging
on language models in D.2 and D.3. Additionally, we dis-
cuss the effectiveness and construction of the expert module
in D.4 and D.5, as well as the role of the router in D.6. We
also explore the selection of the cutoff frequency in D.7 and
explored the implications of forgetting model-specific ca-
pabilities in D.8. Finally, we conclude with a discussion of
future work in D.9.

D.1. Task Interference in Frequency Domain
In this section, we further discuss the task interference

presented in Sec. 4 and provide visualization results.
The first point to address is why we consider the differ-

ence in low-frequency amplitude in the frequency domain
as the cause of task interference. The amplitude in the fre-
quency domain represents the strength of a signal. During
the merging process, if one signal is strong while the other
is weak, the weaker signal is likely to be overshadowed by
the stronger one, regardless of their directional relationship.
This manifests in the merged model as the near-complete
loss of performance from one of the fine-tuned models.
Therefore, a significant difference in the low-frequency am-
plitude will indeed lead to task interference during merging.

In Sec. 4, we quantify interference using the mean vari-
ance, observing a strong negative correlation with merged
model performance on ViT-B/32. Here, normalized per-
formance refers to the ratio of the performance of merged
model on a task to that of the fine-tuned model on the same
task. This negative correlation serves as strong evidence of
task interference in the frequency domain.

Next, we verify whether this negative correlation also
holds for language models. We choose Flan-T5 [6] as
the base model and conduct experiments on eight GLUE
datasets. As shown in Fig. 6, the negative correlation is
observed in language models, demonstrating that task inter-



ference in the frequency domain is a general phenomenon.
Finally, we examine whether low-frequency task inter-

ference is widespread across different models. In Fig. 7
and Fig. 8, we visualize the frequency distribution of fine-
tuned parameters for ViT-B/32 and Flan-T5 [6] on their re-
spective tasks. The results show that task interference in
the low-frequency region is consistently present across var-
ious models. Therefore, our hypothesis is well-supported.
Meanwhile, we observe an interesting phenomenon: in
some layers, frequency-domain amplitude clustering oc-
curs, meaning that certain models have very similar ampli-
tude distributions. This may be related to the training path
during the finetuning process, and we will further investi-
gate this phenomenon in future research.

D.2. Expanded Loss Landscape Analysis
In this section, we attempt to analyze why our proposed

FR-Merging outperforms existing approaches from the per-
spective of the loss landscape. A loss landscape compari-
son with two popular sparse methods, Top-K retention and
DARE, is shown in Fig. 9 (a-c). Our proposed FR-Merging
method brings the two fine-tuned models closer in the loss
landscape for the same task, making their linear combina-
tion fall closer to the loss basin of the target task, thereby
achieving better performance. This aligns with our analysis
from the perspective of task interference and is also con-
sistent with the performance improvements in experiments.
Therefore, our proposed FR-Merging method offers signif-
icant advantages over current approaches.

D.3. Fourier Transform on Language Models
In Sec. 5.2, we analyze the impact of high-pass filter-

ing on the generalization ability of fine-tuned models and
their performance on corresponding tasks using ViT-B/32.
In this part, we extend the analysis to language models, fur-
ther demonstrating the effectiveness of high-pass filtering.
Fig. 9(d) shows the generalization test of RoBERTa on the
GLUE datasets, where filtering out low-frequency informa-
tion also enhances the generalization ability of fine-tuned
language models. This improvement is also reflected in the
merging performance improvement for language models.
However, compared to the effect on language models, high-
pass filtering has a more pronounced impact on ViT. This
may be attributed to the nature of image data, which inher-
ently possesses certain high-frequency and low-frequency
properties. Nevertheless, in summary, FR-Merging, based
on high-pass filtering, is a generalizable, efficient, and high-
performing model merging approach.

D.4. Role of Task Experts
In this section, we demonstrate that introducing addi-

tional information can potentially mitigate task conflicts.
We use ViT-B/32 as the pre-trained model and fine-tune it

Table 11. Using ViT-B/32 as the pre-trained model, we fine-tune
on eight classification tasks, selecting 5% non-overlapping param-
eters per task. Performance improves significantly by adding task-
specific parameters during inference.

Avg acc(%) Norm acc(%)
Fine-tuned 90.5 100.0

No Overlap 5% params. 89.91 99.34
No Overlap Merging 67.31 74.37
+ Task Knowledge 84.55 93.42

on 8 image classification tasks, following the setup in [21].
To prevent the impact of parameter erasure, we select only
5% of non-overlapping parameters for each task. As a re-
sult, after this selection, only task conflicts affect the model
merging process. Merging resulted in a significant perfor-
mance drop, indicating the presence of task conflicts. How-
ever, when we double task-specific vectors for each task
during inference, performance improves substantially. This
suggests that introducing additional information for each
task has the potential to resolve task conflicts.

D.5. Task Experts Construction Analysis
In this section, we analyze the construction of experts

from two aspects: the parameter selection and rescaling.
Top-K Selection. We discuss the rationale behind using
the parameters with the largest changes during the fine-
tuning to approximate task-specific information introduced
by fine-tuning, thereby constructing task experts.By com-
paring L1 distances of model parameters in the frequency
domain, with smaller distances indicating better approxi-
mation, we assess the effectiveness of different methods.

Based on the analysis in Sec 5.3, low-frequency infor-
mation contains more task-specific information but is dis-
carded during model merging in our proposed FR-Merging.
Therefore, task experts should compensate for this missing
information. First, we briefly explain why approximation
methods are preferred over directly saving low-frequency
information. If low-frequency data is directly saved, ensur-
ing lightweight storage requires saving frequency-domain
data instead of inverse-transformed results. This would ne-
cessitate performing inverse transformations during expert
invocation, significantly increasing the inference time. Con-
sidering the constraints of time and storage in edge-side de-
ployment, a more efficient approximation method is needed.

Next, we compare the extent to which different approx-
imation methods approximate low-frequency information
to assess their suitability for constructing task experts. In
Fig 10, we present the effects of approximating using the
top 5% largest fine-tuned parameters and random sam-
pling. It can be observed that using the parameters with the
largest changes during the fine-tuning closely approximates
the frequency-domain characteristics of low-frequency in-
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Figure 7. The parameter frequency domain distribution of ViT-B-32 fine-tuning results on eight image tasks.

Table 12. Ablation of scaling for experts on 8 visual tasks.

ViT-B/32 ViT-B/16 ViT-L/14
w/o scaling 0.5314 0.5323 0.6090
w/ scaling 0.8484 0.8486 0.8895

formation, strongly supporting the rationale for preserv-
ing task-specific information by saving the parameters with
the largest changes during the fine-tuning. Additionally,
the high similarity between low-frequency information and
the original information confirms our hypothesis: low-
frequency information contains more task-specific informa-
tion introduced during fine-tuning.

In summary, using the parameters with the largest
changes during fine-tuning as task experts to offset task-
specific information lost during merging is reasonable. Fur-
thermore, as validated in Sec 6.5, employing our proposed
rescaling method yields even better results. Thus, the expert
construction method proposed in this paper is justified.
Rescaling. We then discuss the necessity of rescaling.
Since we retain only a small portion of the parameters dur-
ing expert extraction, it alters the mean and variance of pa-
rameters, similar to dropout. Our scaling method considers
both the mean and the backbone to preserve the similarity
between the expert and original model outputs. Table 12

Table 13. Ablation study of router training.

Training Data Size 0% 0.1% 0.5% 1% 2% 5%

ViT-B/32 78.1 87.0 88.2 89.7 90.0 90.1
ViT-L/14 88.3 92.1 93.0 93.7 93.9 94.1

shows the CKA similarity between expert outputs and orig-
inal outputs before and after scaling, with higher values in-
dicating better expert performance. Scaling can be found to
greatly improve performance compared to not applying it.

D.6. Role of Router
In this section, we discuss why a router is necessary for

dynamically assigning input data to the appropriate expert.
First, let’s review how the router works: when a new data
arrives, the router determines which existing expert is best
suited to handle it. For example, if we have experts for
mathematics and physics, and a math problem appears, the
router will automatically route it to the mathematics ex-
pert. The mathematics expert will then collaborate with the
merged backbone to solve the problem. Manually assigning
each input sample to the correct task is impractical, and in
real-world applications, we cannot expect users to know in
advance which expert is best suited for each piece of data.
Therefore, having a router to automate this process is both
crucial and aligned with real-world usage scenarios.



Figure 8. The parameter frequency domain distribution of Flan-T5 fine-tuning results on eight GLUE tasks.
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Figure 10. The analysis evaluates the reasonableness of approx-
imating task-specific information using the most changed param-
eters during fine-tuning, by calculating the L1 distance of each
layer’s parameters in CLIP-B/32 fine-tuned on 8 visual tasks with
different approximation methods. Here, Ori refers to the original
parameters, FP to low-pass filtering, Top to maximum value ap-
proximation, and Rand to random sampling approximation.

Meanwhile, in this section, we discuss the amount of data
required for training the router. In Tab. 13, we present
the average performance across eight tasks using FREE-
Merging with different sizes of training data in the fusion
experiments on ViT-B/32 and ViT-B/14. It can be observed
that the performance improvement becomes marginal when
the training data exceeds 1%; therefore, in practical applica-
tions, we use only 1% of the data for training. If resources
are even more limited, using only 0.1% of the data can still
yield acceptable results.

D.7. Filtering Frequency Hyperparameter Analysis

In this section, we analyze the cutoff frequency of the
Fourier high-pass filter. We perform merging using the re-

sults after fine-tuning the ViT-B/32 on eight visual classi-
fication tasks. We explore the impact of filtering different
proportions of low-frequency signals on model merging.

The results are shown in the Table 14. It can be observed
that filtering a certain proportion of low-frequency informa-
tion significantly improves the performance of the model
merging. For example, filtering 10% of the low-frequency
information, despite its small proportion, leads to an im-
pressive 12% improvement in average performance. This
is similar to the analysis of low-frequency information in
image processing, where low-frequency components con-
tain most of the features in the overall information. In the
context of model merging, low-frequency information rep-
resents the specialized knowledge brought by fine-tuning.
While this specialized information can improve model per-
formance on specific tasks, it severely affects the general-
ization ability of the model, leading to task conflicts dur-
ing merging. Therefore, filtering a small proportion of low-
frequency information helps minimize model specialization
without significantly impacting performance, thus avoiding
performance loss caused by task conflicts.

From the experimental results in Table 14, it is evident
that our method is robust to the filtering ratio. Even after
filtering 40% of the information, the method still demon-
strates strong performance improvements, with a noticeable
performance drop only after filtering 60% of the informa-
tion. This strongly indicates that the method proposed in
this paper is highly robust to the cutoff frequency as a hyper-
parameter. The robustness to hyper-parameters makes our
method simple to deploy, providing a significant advantage.

D.8. Fuse to Forget

In this section, we discuss the forgetting of task-specific
components caused by the merging process. In the setting
explored in this paper, we aim to preserve the capabilities
of multiple individual models simultaneously, so that the
merged model can address multiple tasks. Therefore, in our
setting, it is crucial to minimize the loss of task-specific ca-
pabilities during the fusion process. To address this issue,



Table 14. The performance of Fourier high-pass filtering at different filtering percentages.

Filtering Percentage SUN397 Cars RESISC45 EuroSAT SVHN GTSRB MNIST DTD Avg.
Individual 75.3 77.7 96.1 99.7 97.5 98.7 99.7 79.4 90.5
0% 65.3 63.4 71.4 71.7 64.2 52.8 87.5 50.1 65.8
10% 66.1 65.3 77.2 90.0 84.3 81.0 98.2 58.4 77.6
20% 65.6 64.5 76.9 90.3 84.6 82.6 98.5 59.1 77.7
30% 66.2 64.5 77.2 90.1 85.4 82.3 98.5 60.0 78.1
40% 65.2 64.4 76.1 90.4 84.5 82.2 98.5 59.0 77.5
50% 64.9 64.4 76.3 88.9 82.3 81.2 98.4 58.9 76.9
60% 65.4 65.0 76.9 86.7 77.3 76.6 96.9 57.7 75.3

Table 15. Results of merging RoBERTa pre-trained models on eight datasets from GLUE benchmark.

Method CoLA SST2 MRPC STSB QQP MNLI QNLI RTE Avg
Individual 60.18 94.04 89.22 90.63 91.41 87.20 92.71 79.06 85.55
Weight Averaging 13.96 64.11 69.36 31.84 75.36 42.19 58.70 55.23 51.34
Task Arithmetic [21] 18.78 85.89 79.90 74.03 83.78 59.08 69.67 62.09 66.65
Ties-Merging [48] 20.48 84.40 81.13 58.19 85.70 64.65 74.81 42.96 64.04
Breadcrumbs [7] 25.23 85.21 78.19 68.45 81.07 64.40 79.83 63.18 68.19
PCB-Merging [12] 23.46 84.59 79.36 68.89 81.98 63.57 76.56 64.47 67.86
FR-Merging(ours) 15.25 86.81 82.39 80.81 86.21 65.69 78.26 64.73 70.02
RegMean [23] 36.67 90.60 75.74 62.68 83.55 70.02 82.35 58.48 70.01
EMR-Merging [20] 37.82 87.91 82.31 72.90 82.61 78.91 83.24 67.92 74.20
Twin-Merging [29] 52.30 93.23 88.65 68.64 81.99 78.80 88.40 74.37 78.29
FREE-Merging(ours) 54.50 93.69 88.46 67.04 88.03 80.60 89.90 79.06 80.16

we propose FR-Merging and FREE-Merging.
On the other hand, [54] suggests that such forgetting is

not necessarily harmful, for example, in reducing model
bias and other undesirable effects. In their setup, the goal is
to actively forget certain undesirable or sensitive informa-
tion through merging. Thus, the desired behavior of model
fusion differs between the two settings.

However, what remains consistent is that the merging
process can lead to a loss of each model’s specific capabil-
ities. As discussed earlier, this is primarily due to potential
conflicts with the knowledge from other models.

D.9. Future Works

In this section, we present the directions for our future
work. First, we plan to extend our current merging methods
to fine-tuned models with different architectures, thereby
enhancing the generalizability and applicability of our ap-
proach across a wider range of model types. In addition,
we intend to conduct a deeper investigation into the differ-
ences between parameter-efficient fine-tuning (PEFT) and
full fine-tuning, aiming to understand their respective char-
acteristics and behaviors more thoroughly. Based on these
insights, we will develop customized merging strategies
specifically tailored to PEFT, enabling more effective inte-
gration and deployment of existing PEFT-based models.

E. Additional Experimental Results

E.1. Merging Vision Models

In this section, we comprehensively present the detailed
results of model merging using ViT-L/14 as the pre-trained
backbone model across all 30 diverse vision datasets intro-
duced and described in Sec. 6.1, as shown in Table 16.

From the results, we can see that, consistent with the
conclusions presented in the main text, our proposed FR-
Merging method significantly outperforms all existing cost-
free model merging techniques. It is able to efficiently con-
struct a high-performance merged backbone, demonstrating
strong generalization and robustness across various tasks
without incurring any additional training or computational
overhead. This makes FR-Merging a highly effective solu-
tion for model merging in resource-constrained settings. In
addition, when we consider the dynamic addition of expert
models through FREE-Merging, the method is able to main-
tain satisfactory performance levels while introducing only
a minimal amount of extra computational cost. This flex-
ibility allows for adaptive model expansion depending on
the complexity of the task, making FREE-Merging a practi-
cal approach for real-world applications where both perfor-
mance and efficiency are important considerations.



Table 16. Task-specific and average performance when merging ViT-B/16 models on 30 tasks.

Task-specific Acc MNIST Cifar-10 Vegetables Food-101 Kvasir-v2 Intel-Images Cars EuroSAT Weather Cats and Dogs

Individual 99.22 97.88 100.00 87.93 94.31 94.63 85.96 99.04 98.22 99.05

Weight Averaging 27.63 42.91 83.20 68.02 25.27 82.40 7.74 24.37 61.06 91.28
Task Arithmetic [21] 30.81 59.86 91.97 73.06 31.05 89.03 9.34 31.25 74.56 93.61
Ties-Merging [48] 23.21 42.82 92.31 73.22 21.09 89.39 5.30 10.98 72.86 91.88
Breadcrumbs [7] 33.95 54.29 91.83 66.24 32.12 14.30 0.19 32.33 69.04 90.92
FR-Merging(ours) 42.78 63.35 93.16 76.25 38.13 90.73 12.00 36.37 75.60 96.69

RegMean [23] 90.71 89.65 99.10 76.14 71.00 93.60 16.28 74.13 86.62 98.54
AdaMerging [52] 81.22 87.54 97.97 75.23 22.76 91.02 0.42 44.60 89.13 96.91
Twin-Merging [29] 92.10 89.34 98.54 81.43 78.45 94.14 58.12 69.43 92.23 98.85
EMR-Merging [20] 93.40 90.23 98.34 83.54 76.54 95.12 54.34 76.64 94.54 98.65
FREE-Merging(ours) 97.30 95.60 99.00 84.65 85.25 94.45 58.52 79.12 96.38 98.62

Dogs Fashion Pet LandScape Flowers STL-10 CUB-200-2011 EMNIST DTD RESISC45

Individual 85.16 93.26 92.23 86.83 98.19 99.07 84.79 94.67 71.76 98.90

Weight Averaging 47.80 20.46 31.26 73.14 68.97 37.74 37.66 7.73 14.63 13.56
Task Arithmetic [21] 47.65 37.11 33.24 79.59 80.68 39.66 41.86 11.05 14.73 15.50
Ties-Merging [48] 26.03 27.05 12.84 78.27 34.33 6.17 31.28 5.61 3.71 6.79
Breadcrumbs [7] 40.91 35.29 39.16 83.80 81.94 54.73 27.58 3.25 17.81 15.20
FR-Merging(ours) 49.86 42.73 41.26 85.80 84.49 59.53 41.79 23.80 22.23 19.49

RegMean [23] 42.89 83.42 34.62 83.64 95.26 78.94 49.78 48.67 30.53 34.66
AdaMerging [52] 53.09 76.76 48.34 81.98 95.69 68.91 48.19 18.02 16.68 24.83
Twin-Merging [29] 72.65 80.64 68.78 85.49 96.75 74.72 60.47 57.47 41.25 50.57
EMR-Merging [20] 72.34 82.35 67.35 85.73 96.46 76.65 63.11 60.03 40.48 49.57
FREE-Merging(ours) 75.86 86.43 72.57 86.42 97.54 79.01 65.65 63.64 45.71 54.25

MangoLeafBD Beans Cifar-100 GTSRB SVHN SUN397 KenyanFood13 Animal-10N Garbage Fruits-360

Individual 100.00 97.73 89.85 95.74 96.22 78.98 85.53 92.52 93.36 99.63

Weight Averaging 68.58 70.98 77.98 15.00 10.88 57.42 33.55 46.00 22.89 5.38
Task Arithmetic [21] 87.02 84.62 80.20 37.01 17.41 55.88 36.32 51.14 25.23 6.15
Ties-Merging [48] 76.58 67.22 78.61 40.74 10.54 52.69 19.90 19.13 3.91 1.50
Breadcrumbs [7] 79.25 85.15 75.65 38.51 22.89 47.96 26.07 17.303 28.06 1.40
FR-Merging(ours) 86.50 87.38 82.03 44.19 30.08 56.98 38.90 49.10 32.01 12.00

RegMean [23] 98.10 92.58 82.59 56.96 66.13 58.58 57.11 68.74 65.31 19.79
AdaMerging [52] 99.13 93.38 84.19 59.90 25.70 64.09 48.66 66.55 38.54 7.94
Twin-Merging [29] 100.0 94.24 85.57 65.87 75.49 71.25 63.81 71.67 70.82 25.56
EMR-Merging [20] 100.0 95.45 86.43 65.94 76.46 72.45 65.43 73.84 72.24 28.24
FREE-Merging(ours) 100.0 96.40 88.65 68.63 82.23 76.78 69.45 78.40 75.84 37.97

Average Acc Individual Weight Averaging Task Arithmetic Ties-Merging Breadcrumbs FR-Merging(ours)

Acc 93.02 42.52 48.89 37.53 43.57 53.91

Average Acc Individual RegMean AdaMerging Twin-Merging EMR-Merging FREE-Merging(ours)

Acc 93.02 68.14 60.25 75.52 76.39 79.67

Table 17. Results of merging (IA)3 models with T0-3B as pre-trained model on eleven NLP tasks.

Method RTE CB Winogrande WiC WSC COPA H-SWAG Story Cloze ANLI-R1 ANLI-R2 ANLI-R3 Avg. Acc
Individual 82.7 95.8 75.1 71.7 65.3 85.3 44.4 94.9 70.2 46.5 53 71.4
Traditional MTL 88.6 95.8 75.5 61.1 80.6 94.1 42.3 97.6 70.5 49.8 47.7 73.1
Fisher Merging [33] 83.3 83.3 56.7 54.2 58.3 83.1 42.2 94.1 45.9 41.0 42.2 62.2
Task Arithmetic [21] 74.1 83.3 62.8 49.1 49.3 87.5 41.5 95.3 60.8 49.4 50.0 63.9
Weight Averaging 81.2 58.3 53.8 55.2 53.5 80.9 40.1 92.5 43.3 39.2 40.2 58.0
Ties-Merging [48] 78.0 83.3 67.9 57.6 59.7 81.7 42.8 90.3 66.9 51.3 51.1 66.4
Breadcrumbs [7] 71.9 59.4 53.1 31.2 64.1 78.1 46.9 90.2 50.0 31.2 25.0 54.6
PCB-Merging [12] 85.9 83.3 61.9 57.1 63.9 82.4 42.7 91.2 64.2 47.8 45.9 66.1
FR-Merging(ours) 81.3 83.8 68.3 57.9 65.2 88.4 48.6 93.5 56.2 46.2 46.3 66.9
RegMean [23] 81.2 58.3 53.8 55.2 53.5 80.9 40.1 92.5 43.3 39.2 40.2 58.0
EMR-Merging [20] 81.8 87.5 66.6 56.1 65.3 82.4 44.7 93.6 65.7 43.8 50.8 67.1
Twin-Merging [29] 81.2 85.6 65.4 57.2 66.3 81.6 44.4 92.9 66.5 42.4 51.2 66.8
FREE-Merging(ours) 83.2 89.3 69.9 58.4 65.5 84.3 45.2 94.2 67.9 45.2 52.4 68.7



Table 18. Results of merging LoRA models with QWEN-14B as pre-trained model on three generative tasks.

Method MMLU TruthfulQA BBQ Avg.

Pre-trained 69.30 51.27 80.69 67.09
Fine-tuned 68.35 54.34 93.53 72.07

Weight Averaging 68.10 50.01 82.31 66.80
Task Arithmetic [21] 67.62 53.38 78.24 66.41
Task Arithmetic (w/ DARE) [53] 67.82 52.66 82.83 67.77
Ties-Merging [48] 68.27 50.01 84.10 67.46
Ties-Merging (w/ DARE) [53] 69.32 53.07 81.19 67.86
Breadcrumbs [7] 68.24 52.88 79.20 66.77
PCB-Merging [12] 67.23 52.48 80.37 66.69
FR-Merging(ours) 68.16 53.39 82.44 68.00

RegMean [23] 67.89 52.45 82.24 67.52
EMR-Merging [20] 67.82 55.01 90.13 70.98
Twin-Merging [29] 68.32 55.76 90.98 71.68
FREE-Merging(ours) 68.83 57.39 92.14 72.78

E.2. Merging Language Models
In this section, we present the complete and detailed ex-

perimental results of merging a diverse set of language mod-
els, each fine-tuned under different settings, across multiple
widely-used benchmark datasets that cover both classifica-
tion and generative tasks.

First, we present the merging results using RoBERTa
as the pre-trained model, which was fine-tuned individu-
ally on the eight tasks included in the GLUE benchmark.
These results are summarized in Table 15. Our proposed
method achieves the best performance on nearly all of the
datasets, highlighting its strong generalization capability
when applied to language models. In addition, Table 17
reports the merging results across 11 language classifica-
tion tasks, where T0-3B serves as the pre-trained model and
IA3 is used for fine-tuning. Our method also demonstrates
a clear advantage in this setting. Finally, Table 18 provides
the results for merging with QWEN-14B as the pre-trained
model and LoRA as the fine-tuning technique, evaluated
on three generative tasks. In all these experiments, both
FR-Merging and FREE-Merging deliver consistently supe-
rior performance compared to other existing model merging
methods, confirming their effectiveness across various fine-
tuning strategies and model types.

Overall, our proposed methods demonstrate strong gen-
eralization capabilities when applied to language models,
consistently delivering robust performance across a wide
range of tasks, architectures, and fine-tuning strategies.
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