Hierarchical Cross-modal Prompt Learning for Vision-Language Models

Supplementary Material

The following sections contain supplemental informa-
tion and encompass the formulation of the Hierarchical
Knowledge Mapper in Sec. A, more implementation details
in Sec. B, and a thorough ablative analysis of HiCroPL C.

A. Formal Description of Hierarchical Knowl-
edge Mapper

The hierarchical knowledge mapper projects multi-scale
knowledge into a single prompt of another modality, which
allows the prompt to adaptively absorb cross-modal infor-
mation from multiple scales. Taking text-to-image mapping
as an example, formally, let P, = {p’* pl2, .. pt™m} €
RFxmxdv denote visual prompts and P, = {p},p32, ..., pk
represent refined textual proxy tokens. The cross-modal
mapping is computed as:

Q=PW, W,eRmW*%,
K =P,W;, W, eR"*, (7)
V=PW, W,cRu*d,

where W, Wy, W, are learnable projection matrices. The
scaled dot-product attention computes cross-modal interac-
tion:

T

K
Attention(Q, K, V) = Softmax (Q
Vidy

Following the standard transformer architecture, we employ
layer normalization and residual connections:

) V. ()

Q' = Q + Attention(LN(Q),LN(K),LN(V)),

P, = Q'+ FEN(LN(Q)), ®

where FFN denotes the feed-forward network with GELU
activation:

FFN(x) = W3 - GELU(Wx + by) + bo, (10)
where W1, Wy, by, and b, are learnable parameters.

B. Additional Implementation Details

Additional Training details. We train HiCroPL for 5
epochs for cross-dataset evaluation and domain generaliza-
tion settings. The text feature dimension d; = 512 and
the image feature dimension d,, = 768. We fix the learn-
ing rate at 0.0025, and optimization is performed using the
Adam optimizer with a momentum of 0.9 and weight decay
of 0.0005. The corresponding hyperparameters are fixed

Dataset Class name LLM-generated descriptions.

The cabin of an airplane typically has rows
of seats on either side of a central aisle.

airplane cabin

A bookstore has shelves full of books and usually
has a desk where you can pay for your books.

SUN397 ‘ bookstore

A campus looks like a collection

‘ campus of buildings that are close together.

Table 9. Example of descriptive text generated by LLM.

Datasets Classes  Training Size  Validation Size  Testing Size
ImageNet [7] 1,000 1,281,167 N/A 50,000
Caltech101 [8] 100 4,128 1,649 2,465
EuroSAT [12] 10 13,500 5,400 8,100
SUN397 [48] 397 15,880 3,970 19,850
DTD [6] 47 2,820 1,128 1,692
UCF101 [41] 101 7,639 1,808 3,783
FGVCAircraft [31] 100 3,334 3,333 3,333
OxfordPets [35] 37 2,944 736 3,669
StanfordCars [21] 196 6,509 1,635 8,041
Flowers102 [33] 102 4,093 1,633 2,463
Food101 [3] 101 50,500 20,200 30,300
ImageNet-V2 [37] 1000 N/A N/A 10000
ImageNet-Sketch [44] 1000 N/A N/A 50889
ImageNet-A [14] 200 N/A N/A 7500
ImageNet-R [13] 200 N/A N/A 30000

Table 10. Detailed statistics of the datasets.

across all datasets in the same task. All experiments are
conducted on a single NVIDIA A100 GPU.

LLM-generated category descriptions. We employ large
language model (LLM) to generate detailed descriptions for
each category, providing diverse frozen text features. For
each category, we utilize GPT-3 [4] to generate descriptive
sentences. For simplicity, we adopt the publicly available
CoPrompt [39] data. However, unlike CoPrompt, we av-
erage the embeddings of all descriptions for each category
to obtain the final category embedding, rather than dynam-
ically selecting a single sentence as the category represen-
tation. Table 9 presents a sample of the LLM-generated
category descriptions.

Datasets. We evaluate the performance of our method
on 15 recognition datasets. For base-to-novel generaliza-
tion and cross-dataset evaluation tasks, we evaluate our
method on 11 image datasets covering various recognition
tasks. These include ImageNet [7] and Caltech101 [8]
for general object recognition. Five fine-grained clas-
sification datasets, OxfordPets [35], StanfordCars [21],
Flowers102 [33], Food101 [3], and FGVCAircraft [31].
SUN397 [48] is used for scene recognition, UCF101 [41]
for action recognition, DTD [6] for texture classification,



BKF L.,ns Base Novel HM

82.15 74.07 77.90

V 82.09 76.02 78.94

v 8596 74.65 7991
v v 85.80 7799 81.75

Table 11. Ablation experiments on the components of HiCroPL.
BKEF refers to the Bidirectional Knowledge Flow mechanism.

Frozen prompts choice Base Novel HM

aphoto of a {} 84.92 7599 80.21
frozen diverse prompts  85.14  75.23  79.88
LLM (a sentence) 85.33 7641 80.63
LLM(ensemble) 85.89 77.99 81.75

Table 12. Ablation on frozen prompt choices.

and EuroSat [12] for satellite image classification. For
the domain generalization task, ImageNet [7] is used as
the source domain dataset for training the model, and its
variants ImageNet-A [14], ImageNet-R [13], ImageNet-
Sketch [44] and ImageNet-V2 [37] are used for out-of-
distribution dataset evaluation. The detailed statistics of the
11 datasets, as well as the four variants of ImageNet [7], are
shown in Table 10.

C. Additional Experiments

Effect of consistency regularization. Table 11 pro-
vides ablation experiments on the components of HiCroPL.
The bidirectional knowledge flow mechanism significantly
boosts base class performance and achieves the best over-
all results. Additionally, by leveraging intermediate-layer
features, it also improves performance on novel classes.
While using the regularization term alone enhances gener-
alization to novel classes, it does not provide gains on base
classes. Ultimately, the combination of both components in
HiCroPL achieves the best performance.

Effect of frozen prompts. Since different frozen prompts
provide distinct knowledge to constrain prompt learn-
ing, we evaluate the effectiveness of various hand-crafted
prompts. Specifically, we compare the fixed prompt “a
photo of a {}” used in KgCoOp [51], the diverse tex-
tual descriptions in PromptSRC [20], the randomly sam-
pled LLM prompts in CoPrompt [39], and the averaged
LLM prompts in our HiCroPL. The results are shown in Ta-
ble 12. Compared to the dynamically generated individual
sentences in CoPrompt, ensemble LLM-generated prompts
provide richer textual features, thereby improving perfor-
mance. However, the diverse textual descriptions used in
PromptSRC are based on the text templates provided by
CLIP for ImageNet, which may lead to inaccurate descrip-

Novel HM

MSE 85.11 7439 79.39
L1 8579 772 8127
Cosine 85.89 77.99 81.75

Criterion  Base

Table 13. Comparison of different distillation consistency criteria.
Cosine similarity works best.

tions when applied to other datasets, resulting in perfor-
mance degradation.

Influence of different consistency criteria. We evaluate
the impact of different consistency criteria on constraints in
Table 13. The results show that using cosine similarity as
the consistency criterion provides the best performance, fol-
lowed by L1, while using MSE severely degrades the per-
formance.

Few-shot experiments. We evaluate the adaptability of Hi-
CroPL through few-shot experiments. Table 14 provides
detailed per-dataset results for various methods under the
few-shot setting. Compared to previous methods, HiCroPL
achieves consistent improvements.



Dataset Method | 1 shot 2 shots 4 shots 8 shots 16 shots

Linear probe CLIP 45.83 57.98 68.01 74.47 78.79

CoOp 67.56 70.65 74.02 76.98 79.89

CoCoOp 66.79 67.65 71.21 72.96 74.90

Average MaPLe 69.27 72.58 75.37 78.89 81.79
PromptSRC 72.32 75.29 78.35 80.69 82.87

HiCroPL 74.67 76.67 79.01 80.96 83.30

Linear probe CLIP 32.13 44.88 54.85 62.23 67.31

CoOp 66.33 67.07 68.73 70.63 71.87

CoCoOp 69.43 69.78 70.39 70.63 70.83

ImageNet MaPLe 62.67 65.10 67.70 70.30 72.33
PromptSRC 68.13 69.77 71.07 72.33 73.17

HiCroPL 70.54 70.92 71.99 72.91 73.87

Linear probe CLIP 79.88 89.01 92.05 93.41 95.43

CoOp 92.60 93.07 94.4 94.37 95.57

CoCoOp 93.83 94.82 94.98 95.04 95.16

Caltech101 MaPLe 92.57 93.97 94.43 95.20 96.00
PromptSRC 93.83 94.53 95.27 95.67 96.07

HiCroPL 94.44 95.33 95.66 96.23 96.23

Linear probe CLIP 44.06 58.37 71.17 78.36 85.34

CoOp 90.37 89.80 92.57 91.27 91.87

CoCoOp 91.27 92.64 92.81 93.45 93.34

OxfordPets MaPLe 89.10 90.87 91.90 92.57 92.83
PromptSRC 92.00 92.50 93.43 93.50 93.67

HiCroPL 92.29 92.50 93.24 93.70 93.81

Linear probe CLIP 35.66 50.28 63.38 73.67 80.44

CoOp 67.43 70.50 74.47 79.30 83.07

CoCoOp 67.22 68.37 69.39 70.44 71.57

StanfordCars MaPLe 66.60 71.60 75.30 79.47 83.57
PromptSRC 69.40 73.40 77.13 80.97 83.83

HiCroPL 70.64 74.98 76.84 81.03 84.28

Linear probe CLIP 69.74 85.07 92.02 96.10 97.37

CoOp 77.53 87.33 92.17 94.97 97.07

CoCoOp 72.08 75.79 78.40 84.30 87.84

Flowers102 MaPLe 83.30 88.93 92.67 95.80 97.00
PromptSRC 85.93 91.17 93.87 96.27 97.60

HiCroPL 86.32 90.78 94.15 95.94 97.32

Linear probe CLIP 43.96 61.51 73.19 79.79 82.90

CoOp 84.33 84.40 84.47 82.67 84.20

CoCoOp 85.65 86.22 86.88 86.97 87.25

Food101 MaPLe 80.50 81.47 81.77 83.60 85.33
PromptSRC 84.87 85.70 86.17 86.90 87.50

HiCroPL 86.37 86.21 86.98 87.33 87.6

Linear probe CLIP 19.61 26.41 3233 39.35 45.36

CoOp 21.37 26.20 30.83 39.00 43.40

CoCoOp 12.68 15.06 24.79 26.61 31.21

FGVCAircraft MaPLe 26.73 30.90 34.87 42.00 48.40
PromptSRC 27.67 31.70 37.47 43.27 50.83

HiCroPL 31.89 33.90 38.37 42.72 51.13

Linear probe CLIP 41.58 53.70 63.00 69.08 73.28

CoOp 66.77 66.53 69.97 71.53 74.67

CoCoOp 68.33 69.03 70.21 70.84 72.15

SUN397 MaPLe 64.77 67.10 70.67 73.23 75.53
PromptSRC 69.67 71.60 74.00 75.73 77.23

HiCroPL 70.27 72.48 74.62 76.24 77.66

Linear probe CLIP 34.59 40.76 55.71 63.46 69.96

CoOp 50.23 53.60 58.70 64.77 69.87

CoCoOp 48.54 52.17 55.04 58.89 63.04

DTD MaPLe 52.13 55.5 61.00 66.50 71.33
PromptSRC 56.23 59.97 65.53 69.87 72.73

HiCroPL 59.52 62.00 67.14 70.04 75.65

Linear probe CLIP 49.23 61.98 77.09 84.43 87.21

CoOp 54.93 65.17 70.80 78.07 84.93

CoCoOp 55.33 46.74 65.56 68.21 73.32

EuroSAT MaPLe 71.80 78.30 84.50 87.73 92.33
PromptSRC 73.13 79.37 86.90 88.80 92.43

HiCroPL 82.2 85.53 87.47 89.17 92.05

Linear probe CLIP 53.66 65.78 73.28 79.34 82.11

CoOp 71.23 73.43 77.10 80.20 8223

CoCoOp 70.30 73.51 74.82 77.14 78.14

UCF101 MaPLe 71.83 74.60 78.47 81.37 85.03
PromptSRC 74.80 78.50 81.57 84.30 86.47

HiCroPL 76.92 78.69 82.71 85.22 86.70

Table 14. Comparison of HiCroPL performance with various methods for each dataset in few-shot setting.



