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In this supplementary material, we provide additional
implementation details. In Section 1, we provide more im-
plementation details of our method and evaluation metrics.
In Section 2, we provide more visualization results.

1. Experiment Details

1.1. Feature Extraction.

We follow Gan et al. [1] and adopt the C3D features [6] on
the TACoS [4] and ActivityNet Captions [2] datasets and
CLIP [3] features on the MAD [5] datasets for a fair com-
parison. Specifically, on the TACoS and ActivityNet Cap-
tions datasets, we use the C3D model to extract the RGB
features of 16 consecutive frames with a stride of 16, re-
sulting in a final input frame rate of 1.875 FPS. We use the
GloVe 6B word embeddings and a 5-layer transformer en-
coder to extract the sentence features. On the MAD dataset,
we use CLIP-B-32 to extract both the visual and text fea-
tures. The input frame rate is 5 FPS on the MAD dataset.
The pre-trained C3D and CLIP models are frozen during
training.

1.2. Training Details.

Due to the long duration of the complete videos, we seg-
ment the video sequences into segments with a maximum
length of L for efficient training. For ActivityNet and MAD
datasets, L = 1024, while for TACoS dataset, L. = 2304.
For each video segment, we sequentially enumerate short-
term windows, construct event proposals within the current
window, and update the memory. When we obtain all event
proposals from the video, we perform predictions and gra-
dient updates.
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1.3. Evaluation Details.

We follow Gan et al. [1] to use an offline evaluation (i.e.
evaluate after all videos have been input). For baseline mod-
els that predict the probability s;, e; of an event starting or
ending at time ¢, we follow the baseline model, enumerate
candidates (7, j) from clip i — 1 to j, calculate the probabil-
ity: ¢;; = s; * e;. The final top-n predictions are the top-n
candidates with the highest scores c;; after Non-maximum
suppression (NMS). For our model without future predic-
tion, we obtain the score c; and the regressed time bound-
aries (p, p$) for the i-th proposal through the classifier and
regressor. We directly output the top-n predictions with the
highest scores ¢; after NMS. Through future predictions, we
can obtain the probability c{ that the target event will occur
in the near future at time ¢, as well as the predicted start time
of the event ¢ + 0{ . For our model with future prediction,
we modify the start time predictions from event proposals
to the future prediction. Specifically, for the i-th proposal
and time stamp ¢, the modified prediction is (¢ + of , ps),
and its score is c{ *c;. We enumerate ¢ and ¢, and output the
top-n predictions with the highest scores cf * c; after NMS.

For the start and end times evaluation, assuming we have
the true positive samples {(p$, p§, t3 t?)}fi”l, where p? and
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ps are the predicted start and end times, ¢7,t; are the times
at which the model outputs the start/end predictions and N,
is the number of true positive predictions. The correspond-
ing ground truth is {g;, gf}fy:pl, where g® and ¢° are the
start and end time. A sample is considered a true positive
if and only if the model’s top-1 prediction has an IoU with
the ground truth greater than the threshold m. We define the
start time delay (SD) and end time delay (ED) as:
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We evaluate delays at different values of m(m =



0.3,0.5,0.7) and report the average delay.

2. More Qualitative Results

In Figure | and 2, we provide additional visualization re-
sults. It can be observed that the baseline model success-
fully locates the shorter target event in Figure 1a. However,
it incorrectly predicts the longer target time in Figure 1b. In
contrast, our method performs better in both cases. Specifi-
cally, in Figure 1b, our prediction based on event proposals
provides a more accurate estimate of the event’s end time.
However, the prediction of the event’s start time based on
future predictions remains insufficiently accurate. This in-
dicates the difficulty of predicting the start time of a long
event that has not yet begun. Figure 2 shows a failure case.
The query text is complex and includes multiple events,
such as marathons, live music, and live group yoga, result-
ing in the target event having a longer duration. Both our
method and the baseline only identified the first half of the
target event, leading to incomplete localization results. This
indicates that our method still has shortcomings in locating
complex events.

Limitations. As demonstrated in Table 6 of the main
text, our method is slower than the baseline model. How-
ever, our method can still meet the requirements for real-
time prediction (with a speed greater than the frame rate
of typical videos). Additionally, although our hierarchical
event memory can retain long-term historical information,
the length of this historical information is still limited by
the memory size and the number of event scales L (with the
longest proposal length being 2(X—1)).
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Query: Two men both dressed in athletic gear are standing and talking in an
indoor weight lifting gym filled with other equipment.

Ground Truth:
0s~4.14g
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0.26s~8.89s

Query: The man then instructs the man holding the rope to pull the row down a
few times and he's talking the whole time.

Ground Truth:
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Figure 1. Qualitative results on ActivityNet Captions dataset.
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Query: A commercial displays advertising a Sea Wheeze event by showing groups of women

beginning a marathon, live music, and live group yoga all done outdoors.
Ground Truth:

1.01s~50.32s

Baseline:
Start score
=200

End score
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Prediction 0s~31.30s
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5 0.335~29.23s -
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Figure 2. Qualitative results of failure cases on ActivityNet Captions dataset.
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