
Holistic Tokenizer for Autoregressive Image Generation

Supplementary Material

First, we compare Hita with other vanilla tokenizers and
further discuss the token fusion module. Then, we elaborate
on more ablations in detail. Later, we present more visual-
ization samples egarding zero-shot style transfer, zero-shot
in-painting, and class-conditional image generation.

A. Comparison with other image tokenizers.

In this subsection, we first compare Hita with the other
vanilla tokenizers. Next, we depict the differences between
VAR [12] in detail. Next, we present further discussion on
token fusion modules.

A.1. Comparison with vanilla image tokenizers

In Table. 1, we compare with the prevalent image tokenizer,
including VQGAN [3], MaskGiT [1], ViT-VQGAN [13]
and TiTok [14]. The image reconstruction quality is mea-
sured by rFID [6] and rIS [10] metrics, which are evaluated
on 256×256 ImageNet [2] 50k validation benchmark.

Following VQGAN [3], we adopted ℓ2-normalization
into codebook vectors, low codebook vector dimension, and
a codebook size of 16,384. Compared with other coun-
terparts like VQGAN [3] and ViT-VQGAN [13], the pro-
posed tokenizer represents an image with fewer tokens (569
vs. 1024), while achieving a better reconstruction qual-
ity with 100% utilization for both holistic and patch-level
codebooks. Additionally, we observed that our approach
achieves a better rIS 198.5 compared with the VQGAN pro-
posed in LlamaGen [11]. rIS quantifies the KL-divergence
between the original label distribution and the logit dis-
tribution of reconstructed images after softmax normaliza-
tion [10]. In other words, rIS measures the semantic con-
sistency between the reconstructed images and the original
ones. A higher rIS confirms that our holistic tokenizer is
more effective at preserving the semantic consistency of the
reconstructed images.

A.2. Comparison with VAR

As discussed in Sec.2, VAR’s multi-scale tokens can also be
considered as a combination of semantic tokens and patch
tokens. However, as depicted in Table. 2 we find removing
the initial coarse-scale tokens seldom effects its reconstruc-
tion. Meanwhile, linear probing conducted on the cumula-
tive coarse-scale tokens reveals poor semantic information.

Approach
f setup img recon. usage(%)↑

size dim #toks rFID↓ rIS ↑ QH QP

TiTok [14] – 8,192 64 256 1.05 191.5 – 100.0
VQGANoim. [3]

8

256 4

1024

1.44 – – –
VQGAN [3] 8192 256 1.49 – – –
ViT-VQGAN [13] 8192 32 1.28 192.3 – 95.0
VQGANoim. [3] 16384 4 1.19 – – –
VQGAN [3]

16 1024 256 256
7.94 – – –

MaskGiT [1] 2.28 – – –
Var [12] 16 4096 32 680 0.92 196.0 – 100.0
RQ-VAE [8] 32 16384 256 1024 1.83 – – –
VQGAN [3]

16 16384

256 256 4.98 – – –
VQGAN [11] 8 441 1.21 189.1 – 99.2
VQGAN [11] 8 576 0.95 197.3 – 99.7
Hita 8/12 569 1.03 198.5 100.0 100.0

Table 1. Comparison with other image tokenizers. oim. indicates
training on OpenImages [7]. QH /QP denote the codebook usage
in holistic and patch-level quantizers, respectively.

n 0 1 2 3 4 5 6 7 8
rFID 1.31 1.31 1.32 1.31 1.41 1.78 3.22 10.42 92.3
rIS 198.6 199.3 198.8 198.9 196.4 190.2 171.8 119.8 16.4
Acc 2.2 4.9 7.2 8.3 9.2 9.5 9.8 10.1 10.3

Table 2. Analysis of VAR’s multi-scale tokens. Acc indicates top-
1 accuracy for linear probing estimation on the ImageNet [2].

B. Explanation on Token Fusion Module
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Figure 1. Token fusion module comparison. (a).Token fusion
module composed of vanilla attention layers. (b). Our designed
token fusion layers.

As shown in Fig. 1, If a vanilla transformer is used to
construct the token fusion module, due to the existence
of the skip connection and the patch-level tokens contain
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enough information for image reconstruction, the patch-
level tokens can directly flow through the skip connections
into the decoder to reconstruct the image. Thus, the token
fusion module can learn a trivial solution, which overlooks
the holistic tokens and leads to holistic codebook collapse
(Fig. 1a). Once the last k holistic tokens participate in the
image reconstruction, the information of the patch tokens
flowing through the skip connection is incomplete. It needs
to interact with the holistic tokens to obtain complete in-
formation for image reconstruction(Fig. 1b). This simple
operation emphasizes the holistic tokens and avoids code-
book collapse. To better align the token sequence with the
nature of the AR generation model, here we adopt causal
attention to build the token fusion module.

C. More Ablation Studies.

We elaborate on further ablation studies on the design of our
approach. Next, we quantitatively analyze Hita’s zero-shot
inpainting performance.

C.1. AR generation with resolution of 256× 256

Given that Hita ensures a fair comparison with other ap-
proaches by controlling the number of tokens, here we
directly train the image tokenizer and the AR generation
model on 256 × 256 images, enabling them to reconstruct
and generate 256× 256 images, respectively, which is also
in line with common practice. We initialize and train the
image tokenizer for 40 epochs, and train both Hita-B and
Hita-L for 50 epochs as default. As depicted in Table. 3,
Hita can not only achieve a better reconstruction perfor-
mance, but also improve the generation quantity compare
to LlamaGen [11].

Approach Image recon. code usage↑ AR gen.
rFID↓ rIS↑ QH QP gFID↓ gIS↑

LlamaGen-B 2.22 169.8 – 95.2% 7.22 178.3
LlamaGen-L 4.21 200.0
Hita-B 1.40 186.6 100% 100% 6.58 210.2
Hita-L 4.04 242.2

Table 3. Hita performs image reconstruction and AR generation
with image resolution of 256× 256.

C.2. Other Token Fusion Variants

As depicted in Sec 3.2.3, for simplicity, we choose the last
k holistic tokens combined with the patch-level tokens to
reconstruct the image. Here, we refer to MAE [5] and
Titok [14] and design 2 different variants to generate fea-
tures for the first k patch tokens: 1). Partial: A mask token
combined with the positional embedding of the first k patch
tokens are used to generate their feature. In this scenario,
the holistic tokens can be treated as condition; 2). Full:

The patch tokens are completely removed, which is consis-
tent with TiTok [14]. Then, a mask token, along with the
positional embeddings, generates the features for all patch
tokens. To achieve this, we initialize and train 2 different
holistic tokenizers for 40 epochs, and then train 2 AR gen-
eration models – Hita-B and Hita-L based on those tokeniz-
ers with default training settings for 50 epochs. As listed in
Table 4, the token fusion strategy proposed in Hita shows
a better performance in both reconstruction and generation
compared to the other variants. Thus, we choose to use the
last k holistic tokens combined with the patch-level tokens
to reconstruct the image, by default.

Variants
image recon. code usage↑ AR gen.
rFID↓ rIS↑ QH QP Model gFID↓ gIS↑

Partial 1.05 198.2 100.0% 100.0%
B 6.59 209.8
L 3.96 243.1

Full 2.07 170.3 100.0%
– B 11.64 172.1
– L 6.75 219.7

Hita 1.03 198.5 100.0% 100.0%
B 5.85 212.3
L 3.75 262.1

Table 4. Image reconstruction and AR generation. with different
token fusion strategies.

C.3. Attention Modules Study.

As outlined in Sec. 2, the attention modules consists of
one standard transformer Etrans(·), two causal transformers
Ecausal(·) and Êcausal(·). Etrans(·) for holistic feature capture,
Ecausal(·) is for causal latent space alignment, and Êcausal(·)
for holistic codebook learning. Here we study their effec-
tiveness as follows: 1) We remove Etrans(·) and introduce
new attention mask into Ecausal(·) to learn its contribution to
holistic feature capture; 2). We substitute Ecausal(·) to study
its effect on causal latent space alignment. Here, we initial-
ize and train the tokenizers with different attention modules.
Then, we train an AR generation model (Hita-B) on those
holistic tokenizers to estimate their generation quality.

As depicted in Table. 5, it can be observed when only
Etrans is directly discarded from the tokenizer, the quality of
image reconstruction and generation slightly drops. This is
because the subsequent causal transformer Ecausal can simul-
taneously achieve the requirement of holistic feature cap-
ture, semantic-aware feature injection, and feature space
alignment. Similarly, only removing Ecausal leads to a slight
degradation in image reconstruction and generation, indi-
cating that incorporating causal attention Etrans within the
tokenizer helps in learning a latent space that better aligns
with the causal nature of AR models. With all the modules
integrated, we achieve the best performance in terms of re-
construction and generation.
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Figure 2. Quantitative zero-shot in-painting analysis with Hita-L conducted on ImageNet [2] evaluation benchmark.

component image recon. code usage↑ AR gen.
Etrans Ecausal Êcausal rFID↓ rIS↑ QH QP gFID↓ gIS↑

– – – 1.21 189.1 – 99.7% 7.95 166.9
– ✓ ✓ 1.15 196.0 100.0% 100.0% 6.01 196.3
✓ – ✓ 1.20 195.3 100.0% 100.0% 6.12 188.9
✓ ✓ ✓ 1.03 198.5 100.0% 100.0% 5.85 212.3

Table 5. Attention modules analysis in Hita. ‘-’ indicates the mod-
ule was removed from the tokenizer’s architecture.

C.4. Quantitative Study of In-painting Quality.

Beyond the demonstration that the holistic tokenizer can
help AR generation model maintain a better semantic con-
sistency (see Fig. 4), we conduct a quantitative analysis of
this. Similar to the experimental setup described in the
manuscript, we only retain a certain fraction of upper part
image, e.g. 25%, 50%, etc. then utilize a tokenizer to dis-
cretize it into visual tokens. These tokens are fed as a pre-
fix sequence prompt to a pre-trained AR generation model,
which is required to complete the lower part of the im-
age. Here, we take the AR generation models – Hita-L and
LlamaGen-L [11] for a fair comparison.

Evaluation metrics. To quantitatively estimate the seman-
tic consistency of the generated images, we adopt top-1 ac-
curacy and CLIP-score as our metrics, along with the gen-
eration metrics FID and IS. The top-1 accuracy is derived
from image classification tasks, where we utilize a pre-
trained ResNet-101 [4] on ImageNet [2] to classify the com-
pleted images. CLIP-score measures the similarity between
the original and the completed images. Specifically, we feed
both original and in-painted images into the CLIP [9] model
to extract image features and compute their cosine distance
averaged across all samples. Higher top-1 accuracy and
CLIP-scores indicate a better semantic consistency is main-
tained in an AR generation model.

Observation and discussion. As shown in Fig. 2 and
Fig. 4, the AR generation model trained with vanilla VQ-
GAN [3] encounters difficulties in producing an image that
maintains semantic coherence. In contrast, our approach ef-
fectively produces visually consistent content to complete
the given image part, maintaining a better overall coher-
ence even with a significantly truncated prefix. Specifically,

as observed in Fig. 2.a and Fig. 2.b, our method achieves
higher classification accuracy and CLIP-score under vari-
ous settings, with relatively stable fluctuations in all metrics
across different configurations. In contrast, models trained
with vanilla VQGAN exhibit more obvious performance
variations, especially when only a small portion of the im-
age is provided.

Beyond measuring semantic coherence, we also estimate
the completed image quality using the generation evalua-
tion metrics, FID and IS. As shown in Fig. 2.c and Fig. 2.d,
compared to the model trained with vanilla VQGAN[3],
our approach achieves a better FID and IS, which also il-
lustrates the holistic tokenizer can help the AR generation
model generate the lower half of images robustly, maintain-
ing strong semantic consistency.

D. Limitations
Currently, Hita is trained on a limited dataset using ba-
sic optimization techniques. Better performance could be
achieved with more data and advanced learning objectives.
Additionally, Hita can be seamlessly extended to perform
text-conditional image generation, which is an ongoing di-
rection of our research.

E. More Visual Examples
In this section, we present more visualization samples in-
cluding zero-shot style transfer (see Fig. 3), image in-
painting (see Fig. 4), and class-conditional image genera-
tion (see Fig. 5). For optimal clarity, please zoom in.
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Figure 3. Some zero-shot style-transfer samples by Hita’s holistic tokenizer. Best viewed with zoom-in.
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Figure 4. Zero-shot in-painting examples by Hita’s AR generation model. Compared with the baseline. Best viewed with zoom-in.
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Figure 5. Visualization of class-conditional samples generated by Hita. Best viewed with zoom-in.
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