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A. Theoretical Analysis
Lemma 1. Let V = {vj}Lj=1 be a dataset of L samples
vi ∈ RD. Let P ∈ RD×d be a matrix with orthonormal
rows (i.e., PP⊤ = Id). Suppose that adding Gaussian
noise η ∼ N (0, σ2

1ID) to the sample mean ensures (ϵ, δ)-
differential privacy:

µ̂orig =
1

L

L∑
j=1

vj + η.

Then, adding Gaussian noise η′ ∼ N (0, σ2
2Id) to the pro-

jected sample mean:

v̂back = P

 1

L

L∑
j=1

P⊤vj + η′

 ,

ensures (ϵ, δ)-differential privacy, provided that

σ1

σ2
=

maxj ∥vj∥2
maxj ∥P⊤vj∥2

.

Proof. We start by recalling that the Gaussian mechanism
provides (ϵ, δ)-differential privacy when noise drawn from
N (0, σ2I) is added to a function M, where the noise scale
σ is proportional to the function’s ℓ2-sensitivity ∆M.

The sensitivity of the sample mean function Morig(V) =
1
L

∑L
i=1 vi is given by

∆orig = max
V,V′

∥Morig(V)−Morig(V ′)∥
2
,

where V and V ′ differ in at most one element. The maxi-
mum change occurs when one sample is replaced, yielding

∆orig =
1

L
max

i
∥vi∥2.

Similarly, for the projected mean function Mproj(V) =
1
L

∑L
i=1 P

⊤vi, the sensitivity is

∆proj =
1

L
max

i

∥∥P⊤vi

∥∥
2
.

The Gaussian mechanism requires the noise scale σ to
be proportional to the sensitivity. Therefore, the ratio of the
noise scales should match the ratio of sensitivities:

σ1

σ2
=

∆orig

∆proj
=

maxi ∥vi∥2
maxi ∥P⊤vi∥2

.

Theorem 1. Under the same budget of differential privacy
(ϵ, δ, the difference of MSE with and without projection P
in estimating the true mean µ can be decomposed into the
three terms:

MSEorig − MSEback =
1

L
Tr

(
(I − PP⊤)Σr

)
︸ ︷︷ ︸

Projection Residual

+ σ2
proj

(
∥vj∥22

∥P⊤vj∥22
D − d

)
︸ ︷︷ ︸

Dimensional Reduction Effect

− ∥(I − PP⊤)µ∥22 +
1

L
Tr

(
(I − PP⊤)Σp

)
︸ ︷︷ ︸

Projection Error

.

Proof. We analyze the MSE in both the original and pro-
jected spaces to establish the theorem.

First, consider the noisy mean in the original space:

µ̂orig = µ+ ω + ηorig,

where ω = 1
L

∑
j(pj + rj) represents the sampling de-

viation from the true mean due to finite sample size and
inherent data variability.

The MSE in the original space is then:

MSEorig = E
[
∥µ̂orig − µ∥2

2

]
= E

[
∥ω + ηorig∥22

]
.

Expanding the squared norm, we obtain:

MSEorig = E
[
∥ω∥22

]
+ E

[
∥ηorig∥22

]
+ 2E

[
ω⊤ηorig

]
.

Since ω and ηorig are independent and both have zero mean,
the cross term vanishes:

E
[
ω⊤ηorig

]
= 0.

Thus, the MSE in the original space simplifies to:

MSEorig = E
[
∥ω∥22

]
+ E

[
∥ηorig∥22

]
.

Next, consider the noisy mean in the projected space:

µ̂proj = P⊤(µ+ ω) + ηproj,

and the reconstructed noisy mean in the original space:

µ̂back = Pµ̂proj = PP⊤(µ+ ω) + Pηproj.

We introduce an error term to account for the recover
error from PCA transformation. Specifically, define:

ξP = PP⊤µ− µ,



which quantifies the deviation of the true mean µ from its
projection onto the subspace spanned by P . If P perfectly
captures the mean, then ξP = 0. Otherwise, ξP represents
the component of µ orthogonal to the subspace spanned by
P .

Substituting this into the expression for µ̂back, we obtain:

µ̂back = µ+ PP⊤ω + Pηproj + ξP .

The MSE in the projected and reconstructed space is
therefore:

MSEback = E
[
∥µ̂back − µ∥22

]
= E

[∥∥PP⊤ω + Pηproj + ξP
∥∥2
2

]
= E

[
∥PP⊤ω∥22

]
+ E

[
∥Pηproj∥22

]
+ E

[
∥ξP ∥22

]
+ 2E

[
(PP⊤ω)⊤(Pηproj)

]
+ 2E

[
(PP⊤ω)⊤ξP

]
+ 2E

[
(Pηproj)

⊤ξP
]
.

Given that ω, ηproj, and ξP are all zero-mean and mutually
independent, the cross terms vanish:

E
[
(PP⊤ω)⊤(Pηproj)

]
= 0,

E
[
(PP⊤ω)⊤ξP

]
= 0,

E
[
(Pηproj)

⊤ξP
]
= 0.

Thus, the MSE in the projected and reconstructed space
simplifies to:

MSEback = E
[
∥PP⊤ω∥22

]
+E

[
∥Pηproj∥22

]
+E

[
∥ξP ∥22

]
.

To evaluate these expectations, we consider the proper-
ties of covariance matrices. The covariance of ω is:

Cov (ω) =
1

L
(Σp +Σr) .

Thus, the first term becomes:

E
[
∥PP⊤ω∥22

]
= Tr

(
PP⊤Cov (ω)

)
=

1

L
Tr

(
PP⊤(Σp +Σr)

)
.

For the second term, since ηproj ∼ N (0, σ2
projId), we

have:

E
[
∥Pηproj∥22

]
= Tr

(
P⊤PE

[
ηprojη

⊤
proj

])
= Tr

(
P⊤Pσ2

projId
)

= σ2
projTr

(
P⊤P

)
= σ2

projd.

The third term, E
[
∥ξP ∥22

]
, quantifies the error between the

mean estimated in the subspace and its projection back to
the original space compared to the true mean:

E
[
∥ξP ∥22

]
= ∥ξP ∥22 = ∥PP⊤µ− µ∥22.

Therefore, the MSE in the projected and reconstructed
space is:

MSEback =
1

L
Tr

(
PP⊤(Σp +Σr)

)
+σ2

projd+∥PP⊤µ−µ∥22.

Comparing this with the MSE in the original space:

MSEorig =
1

L
Tr (Σp +Σr) + σ2

origD,

we define the difference ∆ as:

∆ = MSEorig − MSEback

=
1

L
Tr (Σp +Σr) + σ2

origD

−
(
1

L
Tr

(
PP⊤(Σp +Σr)

)
+ σ2

projd+ ∥PP⊤µ− µ∥22
)
.

Simplifying the trace terms, we observe that:

Tr (Σp +Σr)− Tr
(
PP⊤(Σp +Σr)

)
= Tr

(
(I − PP⊤)(Σp +Σr)

)
.

According to Lemma 1, we have:

σ2
origD − σ2

projd = σ2
proj

(
maxj ∥vj∥22

maxj ∥P⊤vj∥22
D − d

)
.

Substituting above into the expression for ω, we obtain:

∆ =
1

L
Tr

(
(I − PP⊤)Σr

)
︸ ︷︷ ︸

Projection Residual

+ σ2
proj

(
maxj ∥vj∥22

maxj ∥P⊤vj∥22
D − d

)
︸ ︷︷ ︸

Dimensional Reduction Effect

− ∥(I − PP⊤)µ∥22 +
1

L
Tr

(
(I − PP⊤)Σp

)
︸ ︷︷ ︸

Projection Error

.

Theorem 2. The process of distilling the private dataset D
with an (ϵ1, δ1)-DP mechanism, supported by SER with an
auxiliary dataset Daux satisfying (ϵ2, δ2)-DP to D, achieves
(ϵ1 + ϵ2, δ1 + δ2)-DP to D.

Proof. To prove Theorem 2, we utilize fundamental prop-
erties of differential privacy, specifically the Basic Compo-
sition Theorem and the Post-Processing Theorem.

Lemma 2 (Basic Composition Theorem [10]). If a ran-
domized mechanism M1 satisfies (ϵ1, δ1)-DP and another
randomized mechanism M2 satisfies (ϵ2, δ2)-DP, then the
sequential composition of these mechanisms, defined as
M = M2 ◦M1, satisfies (ϵ1 + ϵ2, δ1 + δ2)-DP.



Lemma 3 (Post-Processing Theorem [10]). Any data-
independent transformation of the output of a differentially
private mechanism does not degrade its privacy guarantees.
Formally, if M satisfies (ϵ, δ)-DP, then for any determinis-
tic or randomized function f , the mechanism f ◦ M also
satisfies (ϵ, δ)-DP.

We define the two mechanisms involved in the process
as follows.

Let M1 represent the mechanism responsible for SER.
The input to M1 is the private dataset D, and its output
is the auxiliary dataset Daux. By assumption, M1 satisfies
(ϵ1, δ1)-differential privacy with respect to D.

Let M2 represent the mechanism responsible for the dis-
tillation process. The inputs to M2 are the private dataset D
and the auxiliary dataset Daux, and its output is the distilled
dataset Z . By assumption, M2 satisfies (ϵ2, δ2)-differential
privacy with respect to D.

It is important to note that M2 utilizes Daux, which is
already the output of M1. However, since M1 ensures that
Daux is (ϵ1, δ1)-DP with respect to D, any further process-
ing of Daux by M2 is considered post-processing of a DP-
protected output.

Applying Lemma 3, the usage of Daux by M2 does not
introduce any additional privacy loss beyond what is al-
ready accounted for by M1. Therefore, M2 maintains its
(ϵ2, δ2)-DP guarantee with respect to D independently of
Daux.

Since M1 and M2 are applied sequentially, we apply
Lemma 3. The cumulative privacy loss incurred by applying
both mechanisms in sequence is the sum of their individual
privacy parameters.

Formally, the overall mechanism M, defined as:

M = M2 ◦M1

satisfies:

M satisfies (ϵ1 + ϵ2, δ1 + δ2)-DP.

By sequentially applying M1 and M2, and leverag-
ing both the Basic Composition and Post-Processing The-
orems, we conclude that the combined process satisfies
(ϵ1 + ϵ2, δ1 + δ2)-DP with respect to the private dataset D.

B. Additional Quantitative Analysis

B.1. Effect of Privacy-Budget Split
Table 3 shows how allocating the total budget (ϵ=1.0) be-
tween auxiliary data generation (ϵ1) and DP-based optima-
tion (ϵ2) affects downstream accuracy. We observe that al-
locating ϵ1:ϵ2=0.8:0.2 offers a good trade-off.

(ϵ1, ϵ2) (0.9, 0.1) (0.8, 0.2) (0.7, 0.3) (0.6, 0.4) (0.5, 0.5)

IPC 10 50 10 50 10 50 10 50 10 50

MNIST 96.3 96.5 96.4 96.7 95.9 96.1 94.9 95.2 93.2 94.5
FashionMNIST 80.2 82.9 80.1 83.1 79.7 82.4 78.8 80.8 76.2 79.4

Table 3. Accuracy (%) under different privacy-budget splits
ϵ1+ϵ2=1.0, fixing δ1 = δ2 = 5 × 106. Results show that al-
locating ϵ1:ϵ2=0.8:0.2 offers a overall good trade-off.

B.2. SER Performance Across Varying Noise Lev-
els & Subspace Dimensions

Figure 5 details how the mean squared error (MSE) of mean
estimation evolves on MNIST when varying both the noise
multiplier and the number of retained subspace dimensions
(horizontal axis in each subplot). Solid curves denote our
method with SER (w/ SER); dashed curves are the vanilla
DP baseline (w/o SER). A clear pattern, consistent with the
residual decomposition in Theorem 1, emerges:
Low-noise regime (noise multiplier ≲ 0.4×10−3). Here,
the DP noise injected per coordinate is small, so the total er-
ror is dominated by the projection error introduced by com-
pressing and reconstructing the data. In this regime, SER
can even increase MSE if the bottleneck is too tight; the
loss of information outweighs the modest noise reduction.
Consequently, retaining more subspace dimensions mono-
tonically lowers the error, and the gap between “w/” and
“w/o” SER narrows.
High-noise regime (noise multiplier ≳ 0.9 × 10−3).
When the privacy budget is tight, the additive Gaussian
noise dominates. Dimensionality reduction now acts as a
signal-to-noise enhancer: a lower-rank subspace filters out
much of the high-dimensional noise before reconstruction.
As a result, SER yields a pronounced MSE drop relative to
the baseline, particularly when only a few hundred compo-
nents are kept. Beyond this point, adding more dimensions
simply reintroduces noise and the benefit diminishes.
Intermediate-noise regime (∼ 0.5× 10−3 to 0.8× 10−3).
At moderate noise levels, the two error sources balance each
other. The MSE curves adopt a classic U-shape, indicative
of a trade-off: MSE first decreases as noise is tamed by
projection, reaches a minimum at an optimal dimensional-
ity (typically 300–800 components), then increases again
as projection bias begins to dominate. This turning point
aligns with the crossover predicted by the dimensional-
reduction effect term in Theorem 1.

Together, these three regimes offer actionable insight
into how SER should be tuned in practice:
• When privacy is loose, favor a larger subspace or skip

SER entirely.
• When privacy is tight, reduce dimensionality aggres-

sively to suppress noise.
• For intermediate privacy budgets, select the number of



subspace dimensions that minimizes MSE.
We apply this same strategy to FashionMNIST and

CIFAR-10 (Figures 6 and 7), and observe analogous trends.

C. Qualitative Results

In Fig. 8, we present distilled samples from the CIFAR-
10, FashionMNIST, and MNIST datasets. Each row corre-
sponds to a distinct class, with all samples generated using
an IPC of 10 and a privacy budget of (1, 10−5).

D. Settings for Generating Auxiliary Datasets

D.1. Auxiliary Data Generation with Stable Diffu-
sion (SD) [22]

For the CIFAR-10 dataset, we generate auxiliary images us-
ing Stable Diffusion version 1.4 (SD-v1-4). The generation
process employs the following prompt for each category:

“A photo of a {category}”.

SD-v1-4 was trained on LAION-5B [25], a dataset that con-
tains no information related to CIFAR-10. Therefore, using
it to train CIFAR-10 is not considered a privacy leakage.
Representative image samples are illustrated in Fig. 9a.

D.2. Auxiliary Data Generation using Differen-
tially Private Diffusion Model

For MNIST and FashionMNIST we generate auxiliary
images with the Differentially Private Diffusion Model
(DPDM). Concretely, we train a Noise Conditional Score
Network (NCSN++)[28] for 50 epochs using Adam [13]
(no weight decay), a batch size of 64, and a learning rate
of 3 × 10−4. The trained network is then sampled with a
deterministic DDIM sampler [27] for 500 inference steps,
ensuring the entire procedure conforms to the prescribed
differential-privacy budget. We sample random images
from the auxiliary dataset in Fig. 9b and Fig. 9c.

D.3. Other Models as Auxiliary Data Generator

Beyond SD and DPDM, we evaluate DP-Diffusion and DP-
LDM as alternative generative models for producing auxil-
iary datasets under differential privacy constraints. In this
experiment, we generate synthetic data for MNIST, Fash-
ionMNIST, and CIFAR-10 using each model while main-
taining a fixed privacy budget (1, 10−5). To assess the im-
pact of dataset size, we vary the number of images per class
(IPC) between 10 and 50. The generated datasets are then
used to train downstream models, following the same eval-
uation protocol as in previous experiments. The results are
shown in Appendix D.3.

Table 4. Comparison of DP-based generative models for SER.

DPDM DP-Diffusion DP-LDM
Dataset IPC=10 IPC=50 IPC=10 IPC=50 IPC=10 IPC=50

MNIST 96.4 96.7 96.3 96.7 96.3 96.8
FashionMNIST 80.1 83.1 80.5 83.0 80.8 83.4
CIFAR-10 47.8 51.5 47.5 51.0 48.2 51.2

D.4. Controlling for the Impact of Extra Informa-
tion in DP-Based Generative Models

To isolate the effect of additional information introduced by
different generative models, we compare our method with
DPDM, DP-Diffusion, and DP-LDM under the same pri-
vacy budget of (1, 10−5). This comparison helps determine
whether simply using these models for downstream training
provides sufficient utility or if our method introduces mean-
ingful improvements beyond what these baselines achieve.
The results are shown in Appendix D.4.

Table 5. DP-based enerative models as baselines.

Dosser DPDM DP-Diffusion DP-LDM
Dataset IPC=10 IPC=50 IPC=10 IPC=50 IPC=10 IPC=50 IPC=10 IPC=50

MNIST 96.4 96.7 69.1 70.5 72.3 74.8 71.5 73.6
FashionMNIST 80.1 83.1 59.7 63.6 60.2 65.1 61.1 64.9
CIFAR-10 50.6 52.3 10.0 9.9 10.0 10.0 10.0 10.2

E. Discussion
E.1. Why Not DP-PCA for SER?

One may argue that, instead of learning a fixed projection
from auxiliary data, we could simply run DP–PCA at ev-
ery iteration to discover the informative subspace on-the-fly.
However, because the extractor is randomly re-initialized
each iteration, its output lies in a fresh feature space. Per-
forming DP-PCA on every feature batch would therefore re-
quire an independent DP query each time. With a total bud-
get (ϵ, δ) split across I iterations, each PCA call receives
only ϵ/I privacy, which completely drowns the signal and
devastates downstream accuracy.
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Figure 5. MNIST: MSE of mean estimation as a function of retained subspace dimensions and noise multiplier. Each subplot
corresponds to a different noise multiplier (privacy level). The horizontal axis shows the number of retained subspace dimensions; the
vertical axis shows mean-squared error (MSE). Solid curves are our method with SER; dashed curves are the vanilla DP baseline.
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Figure 6. FashionMNIST: MSE of mean estimation versus subspace dimension and noise multiplier. Plot settings match Fig. 5.
FashionMNIST exhibits the same qualitative behavior: SER offers little benefit in the low-noise regime, achieves a clear optimum in the
intermediate regime (300–800 components), and substantially reduces MSE under tight privacy budgets (high noise multipliers).



1000 2000
Subspace dimension

0.00000

0.00005

0.00010

M
SE

Noise multiplier = 0.1×10 3

w/ SER
w/o SER

1000 2000
Subspace dimension

0.00000

0.00005

0.00010

M
SE

Noise multiplier = 0.2×10 3

w/ SER
w/o SER

1000 2000
Subspace dimension

0.00000

0.00005

0.00010

M
SE

Noise multiplier = 0.3×10 3

w/ SER
w/o SER

1000 2000
Subspace dimension

0.00000

0.00005

0.00010

M
SE

Noise multiplier = 0.4×10 3

w/ SER
w/o SER

1000 2000
Subspace dimension

0.0000

0.0002

0.0004

0.0006

M
SE

Noise multiplier = 0.5×10 3

w/ SER
w/o SER

1000 2000
Subspace dimension

0.0000

0.0002

0.0004

0.0006

M
SE

Noise multiplier = 0.6×10 3

w/ SER
w/o SER

1000 2000
Subspace dimension

0.0000

0.0002

0.0004

0.0006

M
SE

Noise multiplier = 0.7×10 3

w/ SER
w/o SER

1000 2000
Subspace dimension

0.0000

0.0002

0.0004

0.0006

M
SE

Noise multiplier = 0.8×10 3

w/ SER
w/o SER

1000 2000
Subspace dimension

0.0000

0.0005

0.0010

M
SE

Noise multiplier = 0.9×10 3

w/ SER
w/o SER

1000 2000
Subspace dimension

0.0000

0.0005

0.0010

M
SE

Noise multiplier = 1.0×10 3

w/ SER
w/o SER

1000 2000
Subspace dimension

0.0000

0.0005

0.0010

M
SE

Noise multiplier = 1.1×10 3

w/ SER
w/o SER

1000 2000
Subspace dimension

0.0000

0.0005

0.0010

M
SE

Noise multiplier = 1.2×10 3

w/ SER
w/o SER

Figure 7. CIFAR-10: MSE of mean estimation versus subspace dimension and noise multiplier. Despite the higher input dimension-
ality of CIFAR-10, the same trends appear: SER markedly lowers the MSE when privacy is tight (high noise), has diminishing returns as
more subspace dimensions are added, and converges to the baseline when privacy is loose.
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Figure 8. Distilled samples from the CIFAR-10, FashionMNIST, and MNIST datasets arranged in a 10×10 grid. Each row represents a
specific class, and all samples are generated with an IPC of 10 and a privacy budget of (1, 10−5).



(a) Sampled images from the CIFAR-10 auxiliary dataset.

(b) Sampled images from the FashionMNIST auxiliary dataset.

(c) Sampled images from the MNIST auxiliary dataset.

Figure 9. Sample auxiliary datasets.


