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Table 1. Generalization to Modern Generative Models in OW-DFA. The extended content is marked as red.

Face Type Labeled Sets Unlabeled Sets Source Dataset Method Tag Labeled # Unlabeled #

Identity Swap
Deepfakes [3]
DeepFaceLab [1]

Deepfakes
DeepFaceLab
FaceSwap [5]
FaceShifter [25]
FSGAN [28]

FaceForensics++ [30]
Deepfakes Known 7500 2500
FaceSwap Novel - 7500

ForgeryNet [16]
DeepFaceLab Known 7500 2500
FaceShifter Novel - 7500

FSGAN Novel - 7500

Expression Transfer
Face2Face [33]
FOMM [31]

Face2Face
FOMM
NeuralTextures [2]
Talking-Head-Video [37]
ATVG-Net [9]

FaceForensics++
Face2Face Known 7500 2500

NeuralTextures Novel - 7500

ForgeryNet
FOMM Known 7500 2500

ATVG-Net Novel - 7500
Talking-Head-Video Novel - 7500

Attribute Manipulation
MaskGAN [23]
FaceAPP [4]

MaskGAN
FaceAPP
StarGAN2 [11]
SC-FEGAN [18]
StarGAN [10]

ForgeryNet
MaskGAN Known 7500 2500
StarGAN2 Novel - 7500

SC-FEGAN Novel - 7500

DFFD [12]
FaceAPP Known 7500 2500
StarGAN Novel - 7500

Entire Face Synthesis
StyleGAN [20]
CycleGAN [38]
DiT-XL/2 [29]

StyleGAN
CycleGAN
PGGAN [19]
StyleGAN2 [21]
SiT-XL/2 [6]
DDPM [17]
RDDM [27]
VQGAN [13]

ForgeryNet StyleGAN2 Novel - 7500

DFFD
StyleGAN Known 7500 2500
PGGAN Novel - 7500

ForgeryNIR [34]
CycleGAN Known 7500 2500
StyleGAN2 Novel - 7500

DF40 [35]

DiT-XL/2 Known 7500 2500
SiT-XL/2 Novel - 7500
DDPM Novel - 7500
RDDM Novel - 7500

VQGAN Novel - 7500

Real Face Youtube-Real [30] Celeb-Real [26]
FaceForensics++ Youtube-Real Known 75000 25000

CelebDFv2 [26] Celeb-Real Novel - 25000

1. More Information on Experimental Setting

To keep pace with modern visual generative models, we
have extended the OW-DFA benchmark [32] with diffusion-
based and flow-based generative models from the recent
DF40 [35] dataset. The specifics on the extended bench-
mark is shown in Table 1.
Training and Testing Splits: We design two experimental
settings to extend the OW-DFA dataset. The training and
test sets were divided as 4:1 for both settings. In Setting 1,
we added DiT-XL/2 [29], SiT-XL/2 [6], RDDM [27], and
VQGAN [13] into both the training and test sets under the
“Entire Face Synthesis” face type. Among these, DiT-XL/2
was used as a known attack comprising 10,000 images, of
which 7,500 were labeled and 2,500 were unlabeled. The
other three models (SiT-XL/2, RDDM, and VQGAN) were
treated as novel attacks, each containing 7,500 unlabeled
images. In Setting 2, we expanded the original dataset in

OW-DFA Protocol 1 with 7,500 unlabeled images generated
by DDPM [17], which were not used during training but
were included in the testing phase as unseen novel attacks
for evaluation. These images were randomly selected from
the corresponding datasets to ensure representativeness and
unbiased evaluation.

Training Details: For the benchmark experiments on OW-
DFA [32], we followed [32] to consistently train the base-
line methods [8, 14, 32] for 50 epochs with an initial learn-
ing rate of 3e−4, which is decayed by 80% every 10 epochs.
The batch size is 128 for all experiments.

For the benchmark experiments on OSMA, we
followed[36] to train the baseline methods [7, 36] for 40
epochs. The learning rate is set as 10−4. The batch sizes
are set to 8 and 32 in [36] and [7] respectively. All models
are learned using the Adam [22] optimizer.



Table 2. Supplemented technical details of our CDAL.

Description Output Operations Args

Feature Extraction (B,C,H,W ) Backbone –

Expert Routing Weight (B,N) MLP + Softmax C → N

Causal Expert Conv (B,M, H
2 ,

W
2 ) CondConv2d

kernel=3×3, stride=2
padding=1, experts=N

Standard Augment (B,C,H,W )

Downscale → Upscale ×2 (bilinear)

GaussianBlur2d
kernel=11×11
σ = 7

AddNoise ε ∼ N (0, 0.12)

Classification Head (B,K) MLP M×C → K

2. More In-depth Technical Details
Here we provide more in-depth technical details of our
CDAL to supplement the main pages.

2.1. Introductions of the Baseline Methods
Open-world Deepfake Attribution: In OW-DFA, we ex-
perimented on three baseline methods to validate the effec-
tiveness of our proposed CDAL. Brief introductions of these
baseline methods are listed as follows:
• ORCA [8] proposes an open-world self-supervised learn-

ing framework by constructing pairwise affinity through
cosine similarity optimization, enforcing proximity be-
tween high-confidence matches. The Loriginal in this case
contains LS and LP [8], which represent the supervised
objective with an uncertainty adaptive margin, and a pair-
wise objective respectively.

• NACH [14] introduces a novel approach to filter out er-
roneous samples and synchronizes the learning pace be-
tween seen and unseen classes. The Loriginal in this case is
an improved version of LP from ORCA [8], which parti-
tions the feature space and carefully processes unlabeled
data to ensure that the model learns robustly from both
labeled and unlabeled data.

• CPL [32] proposes global-local voting to align features
of diversely manipulated forged faces and soft pseudo-
labeling weighted by prediction confidence to suppress
noise from similar manipulation patterns in unlabeled
data. The Loriginal in this case are LGLV and LCSP .
LGLV combines global and local similarity to accurately
match samples of the same attack type, while LCSP as-
signs soft pseudo-labels based on the confidence of pre-
dictions to reduce the impact of pseudo-noise.

Open-world GAN Attribution: To evaluate the perfor-
mance of CDAL in OSMA, we conducted experiments us-
ing the following baseline methods for comparison:

• RepMix [7] designs a representation mixing layer that
synthesizes new data by interpolating data points in the
feature space. It enhances the generalization to unseen
semantics and transformations, which improves the ro-
bustness of synthesized image attribution. Loriginal in this
case consists of Ldet for detecting real from fake images,
and Lattr for identifying the GAN architecture that gener-
ated the fake images.

• POSE [36] introduces a method to progressively simu-
late the open space of unknown models using lightweight
augmentation models, which aims to expand the potential
open space around the boundary of known models. The
Loriginal in this case is mainly two parts. An augmented
loss merges pixel reconstruction and embedding diversity
for semantic fidelity and distinct samples. A diversity loss
drives inter-model diversity to prevent overlaps and en-
hance the learned uniqueness.

2.2. More Technical Details on CDAL
As displayed in Table 2, we present more technical details
to supplement the Approach Section in the main pages.
Feature Extraction: In the OW-DFA benchmark, we em-
ploy ResNet-50 [15] as the backbone network for the ex-
traction of X, which is also shared by baseline methods
we experimented on [8, 14, 32]. In the OSMA benchmark,
We follow [7, 36] to use their original feature extractors.
Specifically, [36] uses a discrete cosine transform (DCT)
transformation layer combined with a simple convolutional
network, while [7] also uses ResNet-50 [15].
Causal Expert Convolution: In CE Convolution, to dy-
namically generate combination weights for each expert, we
map the feature channels to the number of experts N using
an MLP, followed by Softmax normalization. This enables
adaptive feature allocation for different regions.
Standard Augmentation: In Causal Attention Augmen-
tation, we conduct a series of standard data augmentation



Table 3. Detailed quantitative results (%) of GAN discovery (Protocol 2) on OSMA [36], which are averaged among five splits.

Method Close-set Unseen Seed Unseen Architecture Unseen Dataset Unseen All

ACC Purity NMI ARI Purity NMI ARI Purity NMI ARI Purity NMI ARI

RepMix [7] 93.69 23.71 33.06 15.21 50.94 64.73 40.86 28.52 34.75 13.93 31.53 51.60 18.71
POSE [36] 94.81 29.54 32.37 13.83 62.77 70.16 49.67 41.52 48.89 25.50 41.04 60.59 26.39

RepMix + Ours 94.01 24.55 33.75 16.09 56.45 67.17 44.40 35.79 39.97 20.79 37.96 52.08 20.66
Improvement +0.32 +0.84 +0.69 +0.88 +5.51 +2.44 +3.54 +7.27 +5.22 +6.86 +6.43 +0.48 +1.95
POSE + Ours 95.25 30.32 33.14 14.57 67.95 73.39 55.36 50.31 55.13 33.53 48.93 61.89 29.65
Improvement +0.44 +0.78 +0.77 +0.74 +5.18 +3.23 +5.69 +8.79 +6.24 +8.03 +7.89 +1.30 +3.26

operations. Specifically, we use two bilinear interpolations
to simulate resolution changes, an 11 × 11 Gaussian blur
kernel with a standard deviation of 7 to blur high-frequency
details, and Gaussian noises with a standard deviation of
0.1.
Classification Head: When computing the causal effect,
we use a shared classifier δ to map the fused feature di-
mensions to the target class numbers K, and output the final
classification probability logits.
Attention Weight: The normalized energy distribution
of factual attention channels is a Categorical Distribution.
Each element in the Categorical Distribution is computed
by summing the feature values across the spatial dimensions
of the feature map F, followed by a square root operation
and normalization:

w = Norm


√√√√ H∑

h=1

W∑
w=1

Fh,w

 . (1)

where w ∈ RM represents the normalized energy distribu-
tion across M channels. Mathematically, this categorical
distribution is formulated as:

p(w) = Cat(w1, w2, . . . , wM )

=

{
1 if

∑M
i=1 wi = 1 and wi ≥ 0 for all i

0 otherwise

(2)

with
∑M

i=1 wi = 1 and wi ≥ 0 for all i ∈ 1, 2, . . . ,M .
Hyper-parameters: The hyper-parameters η1, η2, and η3
for the total loss functions are set as 0.5, 0.5 and 0.2 respec-
tively.
Alternative Counterfactual Attentions in Table 5(d):
The alternative counterfactual attentions we compare with
in Table 5(d) are derived as follows:
• Random Attentions: We create random attention by

sampling from a uniform distribution over [0, 2] to make
an even spread of attention values.

• Uniform Attentions: We create uniform attention by set-
ting all attention weights to a fixed value of 0.5.

• Reversed Attentions: We create reversed attention by
computing the element-wise subtraction between an all-

Table 4. Results of experiment on handcrafted input features [24]
on Protocol-1 of OW-DFA [32].

Method Known Novel All

ACC ACC NMI ARI ACC NMI ARI

CPL [32] 98.68 75.21 73.19 65.71 86.25 85.58 82.35
CPL [32] + MHFs [24] 98.90 78.83 76.94 69.81 88.25 87.88 84.09
CPL [32] + Ours 98.90 86.02 82.19 76.98 92.06 90.60 87.66
CPL [32] + MHFs [24] + Ours 98.90 86.58 85.12 79.41 92.37 91.85 88.74

ones tensor and the factual attentions extracted by our
CE-Conv.

• Shuffled Attentions: We create shuffled attention by ran-
domly reordering the factual attentions values extracted
by CE-Conv. Specifically, we flatten the attentions, ap-
ply a random permutation, and then reshape them into the
original shape.

3. More Experimental Results and Analysis
Here we provided additional quantitative and visualization
results to supplement those in the main pages.

3.1. More Quantitative Results
Results of GAN discovery: Table 3 demonstrates more
in-depth performances of different GAN discovery meth-
ods. Our proposed CDAL significantly enhances both Rep-
Mix [7] and POSE [36]. When combined with RepMix,
our method achieves the highest improvement in Purity by
7.27% on the unseen architectures. Similarly, with POSE,
CDAL enhances the Purity by 8.79% which further vali-
dates its generalization capability. These results highlight
the effectiveness of CDAL in improving adaptability to un-
seen data on various aspects.
Results of Applying CDAL to Handcrafted Input Fea-
tures: While our proposed CDAL focus on the im-
provement on previous learning strategies including hand-
crafted design of region partition and feature space, a re-
cent work [24] highlights an alternative approach that lever-
ages handcrafted features for open-set model attribution.
We accordingly conducted experiment on implementing the
Multi-Directional High-Pass Filters (MHFs) in [24] to con-
catenate the input features of baseline model with hand-
crafted features, denoted as CPL+MHFs. From the results
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Figure 2. t-sne visualization of Protocol 2 in OW-DFA.

in Table 4, we can see that while CPL+MHFs is able to
enhance the performances upon CPL, the further incorpo-
ration of our method (CPL+MHFs+Ours) achieves signifi-
cantly better performance across all metrics compared with
CPL+MHFs. Also, for the baseline method [32], solely
introducing CDAL also brings notably larger performance
gains compared with solely introducing MHFs. These re-
sults demonstrate the versatility of our proposed method,
whose effectiveness can be imposed upon various input fea-
tures, as well as various learning strategies.
Results of Robustness Against Adaptive Attack: We em-
ployed FGSM (budget 5e−4) as an adaptive attack to input
samples and observe obviously smaller drops with CDAL
in Table 5, which verifies the robustness of our method.

Table 5. FGSM attacks on Protocol 1 of OW-DFA

FGSM CPL CDAL

ACC NMI ARI ACC NMI ARI

w./o. attack 75.21 73.19 65.71 86.02 82.19 76.98
w./ attack 68.73 65.58 57.08 82.29 79.74 73.92

∆ -6.48 -7.61 -8.63 -3.73 -2.45 -3.06
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Figure 3. t-sne visualization of Setting 1 on our extended OW-
DFA benchmark.

3.2. More Visulization Results
Additional Motivative Examples: Figure 1 provides addi-
tional visualizations of motivative examples of our CDAL
as in Figure 1 of the main pages. The “Original” columns
show that forgery images originating from the same identity
exhibit high semantic similarity from source identities in fa-
cial features, which causes them to naturally group together
in the feature space. The “CPL” columns show that current
baseline method [32] still struggles with these source biases
faced with unseen novel attacks, rather than effectively cap-
turing model-specific traces. In contrast, the “CPL+Ours”
columns demonstrate that our method aims to spot those
subtle forgery traces which are crucial for model attribution.
More t-SNE Visualization of OW-DFA: As illustrated in
Figure 2, we further present the t-SNE results of Proto-
col 2 in OW-DFA. Our method maintains better discrim-
inative capability even when confronted with real faces
from Celeb-DF [26]. our method also successfully clus-



ters new attacks like FSGAN [28] and FaceShifter [25] from
ForgeryNet [16] which are hard to distinguish due to similar
source bias features.

We also provide t-SNE visualization for Setting 1 on
our extended OW-DFA benchmark in Figure 3, where our
method demonstrates notable superiority over the baseline
method [32].

t-SNE Visualization of OSMA: To visually compare the
performance differences between CDAL and the baseline
method POSE, Figure 4 presents the t-SNE visualization re-
sults of split 1 in OSMA. In the Unseen architecture, POSE
exhibits limited ability to distinguish feature from differ-
ent generative model architectures, resulting in significant
overlap between clusters. In contrast, CDAL forms clus-
ters with high separation, by effectively extracting discrim-
inative features from different architectures, which demon-
strates stronger adaptability to unseen architectural varia-
tions. For the Unseen seed and Unseen dataset, the fea-
ture representations generated by POSE are either scattered
or significantly overlapping, highlighting its limitations in
handling random variations and data diversity. In compar-
ison, CDAL consistently forms clusters with clear bound-
aries, which showcases its robustness and generalization ca-
pability. The visualization results for splits 2, 3, 4, and 5 are
shown in Figures 5, 6, 7, and 8.
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Figure 4. t-sne visualization of split 1 in OSMA.
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Figure 5. t-sne visualization of split 2 in OSMA.
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Figure 6. t-sne visualization of split 3 in OSMA.
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Figure 7. t-sne visualization of split 4 in OSMA.
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Figure 8. t-sne visualization of split 5 in OSMA.
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