One Trajectory, One Token:
Grounded Video Tokenization via Panoptic Sub-object Trajectory

Supplementary Material

1. More Implementation Details

We provide the complete training details in Table 1. We op-
timize the models using AdamW optimizer [1] with a learn-
ing rate of 10~%, a weight decay of 10~2, and mixed pre-
cision training. We adopt a cosine annealing learning rate
schedule. The contrastive view (batch size) for video train-
ing is set to 256, and all models are trained for 30 epochs.
We train all models with 32 NVIDIA H100 GPUs. For data
augmentation, we apply a combination of random ColorJit-
ter, Grayscale, Gaussian blur, horizontal flip, and resized
cropping during training. At testing, we use only a simple
resizing operation to ensure consistency.

Hyperparameters for downstream MAP probing. For
two downstream evaluations that require MAP probing, We
use AdamW optimizer with weight decay 0.5, and set learn-
ing rate to be 0.0001. We also layer-normalize the video
features before providing them to the classifier. We use a
batch size of 128, and we train the classifier for 12 epochs.

Hyperparameter Value
Trasformer size vit-large
Resolution 224

Frame sampling uniform 16 frames
Optimizer AdamW

Base LR le=*

Weight decay 0.02
Optimizer momentum p1 = 0.9, 52 = 0.999
Batch size video-256, image-4096
Training epochs 30

LR schedule cosine decay
Warm up epochs 1

Warm up schedule linear warm-up

Random crop scale 0.2, 1.0)
Random crop ratio (3/4, 4/3)
Horizontal flip probability 0.5
Color jitter probability 0.8
Gaussian blur probability 0.5
Grayscale probability 0.2

Table 1. hyperparameters used for pre-training.

2. More Architecture Details

To complement the main paper, we provide additional de-
tails on our model architecture and TokenMerge baseline’s

architecture.

Trajectory Encoder. We provide the complete architec-
tural details of our trajectory tokenizer in table ??. As
shown, the parameter size of our tokenizer is an order of
magnitude smaller compared with main transformer.

TokenMerge Baseline. Although the size of our trajectory
encoder is very small (20M) compared with the transformer
encoder (304M), to ensure that our improvements do not
simply come from adding parameters, we train a model
that uses exactly the same modules as TrajViT but uses a
learnable token merging mechanism that does not incorpo-
rate trajectory priors. The architecture of the TokenMerge
baseline is illustrated in Figure 1. We design it such that
the only difference from our trajectory tokenizer is whether
it incorporates trajectory priors when compressing tokens.
All other architectural modules remain identical to ensure a
controlled comparison. The output token number is set to be
1024 to match the average FLOPs of our model at training
set (including trajectory generation).

3. Key Frame Detection Algorithm

We illustrate the details of our key frame detection algo-
rithm, which ensembles three sub-detectors to ensure ro-
bust scene boundary identification. A frame is classified as
a key frame if it is proposed by at least two out of the three
detectors. All detectors are implemented using the Content-
Aware Detector from the PySceneDetect package.

HSYV Colorspace Detector. This detector operates in the
HSV color space. Each frame is converted from RGB to
HSYV, and the average difference across all channels is com-
puted frame by frame. A scene change is triggered if the
difference between adjacent frames exceeds threshold 27.

Luminance Histogram Detector. Each frame is converted
from its original color space to YCbCr, and the Y chan-
nel (luminance) is extracted. The normalized histogram
of the Y channel in the current frame is then compared
to that of the previous frame using the correlation method
(cv2.HISTCM_CORREL). A scene change is detected if the
histogram correlation between consecutive frames falls be-
low a set threshold 0.15.

RGB Detector. This detector computes an intensity value
for each frame by averaging the R, G, and B values across
all pixels, yielding a single floating-point number. A scene
cut is triggered if the intensity difference between consecu-
tive frames exceeds threshold 12.

Module Detail Output Shape Parameter Size
ResNet18 stage 1 + linear (64—64) + resize (56x56)
ResNet18 stage 2 + linear (128—64) + resize (28— 56)
Per-frame Feature Extractor | sum ResNet18 stage 3 + linear (256—64) + resize (14—56) T x 56 x 56 x 64 11.6M
ResNet18 stage 4 + linear (512—64) + resize (7—56)
Mask Pooling Mask pooling per trajectory (total N trajectories) N x T x 64
Sinusoidal Encoder bounding box coordinate (4) — high-dimensional embeddings (64) N xT x 64
. . . Query: 1; Layers: 1
Perceiver Resampler Multi-head cross attention { Heads: 8: Dim: 64 X 2 N xT x 64 8.4M
MLP Linear (64—1024) x 2 N x 1024 0.13M
Main Transformer Transformer module of ViT-Large N x 1024 304M
Table 2. Detailed architecture of our model.
. [
(f e N O —
- []
ResNet-18 P
[

learnable queries

Figure 1. Architecture for TokenMerge baseline.

Model K400 SSV2 UFC-101
ViT3D 42.0 12.3 40.4
TokenLearner 40.9 11.0 37.8
ViviT 39.9 11.5 34.8
AutoMerge 38.4 10.3 354
RLT 41.0 10.3 33.7
ToMe 38.2 9.9 37.1

TrajViT (ours) 42.4 11.8 42.1

Table 3. Zero-shot action classification performance. We report
top-5 accuracy.

4. Detailed setup in AVAv2 Spatial Temporal
Detection task

We follow the setup in [2] to evaluate our model on the
AVAV2 spatial-temporal action detection task. In this task,
given an object’s bounding box in a specific video frame,
the model must predict the action associated with that object
at that time instant. This requires extracting video features
corresponding to the region of interest (ROI) and applying
a probing head to classify the action based on the localized
features. We use the same attentive probing head across all
models, but the ROI pooling strategy differs depending on
each model’s tokenization mechanism, which we illustrate
below:

ViT3D. ViT3D produces a spatial-temporal feature map, al-

lowing us to use ROIAlign to extract features corresponding
to the given bounding box. This setup is the same as [2]
Our Model. Since each output token in our model corre-
sponds to an object trajectory, we leverage its segmenta-
tion mask at each timestep to determine its presence within
the bounding box. We gather all tokens whose trajectories
have at least 80% of their segmentation mask area inside the
bounding box at the annotated frame.

ViViT. ViViT is a two-stage model, where the first stage
outputs spatial features, and the second stage extracts tem-
poral features. We handle this by pooling its spatial features
using ROIAlign and selecting the corresponding temporal
feature based on the annotated timestep. The final feature is
obtained by concatenating the pooled spatial and temporal
representations.

TokenLearner. We use the TokenFuser module proposed
in its original paper to reproject pruned tokens back to their
original spatial locations. This allows us to perform feature
pooling in the same manner as ViT3D.

RLT & ToMe. Both RLT and ToMe dynamically merge
space-time patch tokens that are identified as redundant.
We reassemble the feature map by duplicating merged fea-
tures back to their corresponding redundant patches, then
ROI pool the reconstructed feature map in the same way as
ViT3D.

TokenMerge. Since TokenMerge learns to merge tokens in
a fully data-driven manner, it does not retain explicit spatial
correspondences to the original input grid. As a result, we

Training Data Model ActivityNet VATEX MSR-VTT Charades
txt2vid vid2txt txt2vid vid2txt txt2vid vid2txt txt2vid vid2txt
anda-2m ViT3D 26.33 27.33 24.74 44.80 23.75 48.30 7.11 7.29
p TrajViT (ours) 31.97 31.97 28.94 51.40 26.94 50.60 10.14 10.47
anda-dm ViT3D 35.34 34.54 35.00 59.11 30.90 56.61 12.61 12.61
p TrajViT (ours) 38.62 38.41 36.19 61.02 31.71 60.52 14.81 14.81
anda-8m ViT3D 38.82 37.46 40.59 64.46 34,71 60.83 17.45 16.00
P TrajViT (ours) 42.35 41.92 41.35 65.35 35.22 62.73 19.41 18.36

Table 4. Full retrieval performance for pretraining video data scaling experiment. We report results on four commonly used video

retrieval datasets for both text-to-video (t xt 2vid) and video-to-text (vid2txt).

Training Data Model ActivityNet VATEX MSR-VTT Charades
txt2vid vid2txt txt2vid vid2txt txt2vid vid2txt txt2vid @ vid2txt
anda8m ViT3D 37.82 3454 3959 59.11 3371 56.51 1535 1261
P TrajViT (ours) 41.35 3841 4035 61.02 3422 61.00 1841 14.81
anda8m + datacompS0m ViT3D 43.62 44.65 47.16 70.70 41.16 68.74 21.25 20.50
p P TrajViT (ours) 53.57 53.36 5038 75.10 4738 79.96 2480 22.01

Table 5. Full retrieval performance for incorporating image data experiment. We report R@5 scores on four commonly used video
retrieval datasets. txt 2vid is text-to-video retrieval and vid2txt is video-to-text retrieval.

Model ImageNet COCO

metrics Top-5 Acc img2txt R@5 txt2img R@5
ViT 77.7 73.6 58.3
TrajViT (ours) 74.9 71.1 55.5

Table 6. Performance for image-only experiments. We re-
port top-5 accuracy for ImageNet classification and Recall@5 for
COCO retrieval (image-to-text & text-to-image).

are unable to pool features corresponding to the region of
interest.

S. Full tables for scaling performance experi-
ments

We provide the complete table for the scaling up experi-
ments, which we only show the plots of average trend in
the main table. Table 4 presents the performance variations
of the model with the change of the scale of the training
data. Table 5 presents the model’s performance with im-
ages adding to training data.

6. Zero-shot action classification

We report zero-shot action classification performance for all
models here as a complement for attentive probing action
classification that shown in the main paper. We note that
for video model, attentive probing that only involves vision

encoder is a more accurate measure for action classification
task, because the text template for action is hard to construct
and likely to be out-of-distribution for text that model saw
during training (e.g. put something on something). Never-
theless, as shown in table 3, our model still has competitive
performance under zero-shot setting, outperforming most of
baseline models.

7. Visualizations of generated trajectories

We show examples of generated trajectories in our training
set at figure 2 and figure 3. Our pipeline allows us to gen-
erate high-quality panoptic trajectory with high efficiency.
The generated segments are in detailed subobject level, al-
lowing us to reason fine-grained interaction. The tracking
is also very robust attributing to the powerful SAM2 model.
We do observe occasional matching failure for the same ob-
jects between sub-clips (like frame 3— 4 in example 3),
causing the same object being split into multiple trajecto-
ries.

8. Image only experiments

Since we mention our model can naturally be adapted to
image data, it will be interesting to see its performance in
image-only training as well. We therefore train our model
at datacomp50M image-captioning dataset, and compare it
to regular ViT model that trains in the same dataset (ta-
ble 6. We found our model underperforms ViT in down-

stream evaluation of ImageNet zero-shot classification and
COCO zero-shot image-text retrieval. This means our big-
ger gain in incorperating image data experiment for our
model is primarily because our model can train at image
and video together, avoiding image-then-video pipeline and
the information loss when transferring 2D model’s weight
to 3D model. How to improve our model design to let it
become also competitive in image-only domain is left to fu-
ture work.

References

[1] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. arXiv preprint arXiv:1711.05101, 2017. 1

[2] Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Video-
mae: Masked autoencoders are data-efficient learners for self-
supervised video pre-training. Advances in neural information
processing systems, 35:10078—-10093, 2022. 2

Figure 2. Visualizations of our generated trajectories (part 1).

Figure 3. Visualizations of our generated trajectories (part 2).

	More Implementation Details
	More Architecture Details
	Key Frame Detection Algorithm
	Detailed setup in AVAv2 Spatial Temporal Detection task
	Full tables for scaling performance experiments
	Zero-shot action classification
	Visualizations of generated trajectories
	Image only experiments

