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1. Ablation of Different Initial Transforma-
tions and Features

Our method takes both the initial transformation and 3D
features as inputs, allowing us to experiment with differ-
ent combinations of initial transformations and 3D features
from various methods. The results are presented in Table
1. In the table, the method on the left side of the plus sign
provides the initial transformation, while the method on the
right side provides the 3D features. As shown in the table,
the quality of the initial transformation has a significant im-
pact on the registration results when using different initial
transformations with the same features, which aligns with
the limitations discussed previously. Furthermore, when the
same initial transformation is used with different features,
the choice of features also influences the registration out-
comes. This is quite obvious. However, diffusion features,
serving as supplementary features, can still further enhance
the registration performance based on 3D features.

Table 1. Ablation of Different Initial Transformations And Fea-
tures.

3DMatch
RR ↑ RE ↓ TE ↓

FCGF [4] 67.9 2.20 0.078
GeoTransformer [8] 92.0 1.72 0.062

FCGF + GeoTransformer 93.2 1.52 0.057
GeoTransformer + GeoTransformer 94.5 1.56 0.050

FCGF + FCGF 76.2 2.07 0.055
GeoTransformer + FCGF 90.9 2.08 0.069

2. The Impact of Initial Transformation on
GeoTransformer

In addition, we have also verified the impact of initial trans-
formations on point cloud registration methods, as shown
in Table 2. From the results, it can be observed that ini-
tial transformations can indeed optimize point cloud reg-

istration methods, albeit with less significant improvement
compared to the use of diffusion features. Although theo-
retically, geometry-based 3D feature descriptors should be
insensitive to transformations, this insight inspires us to po-
tentially leverage them in the future to further enhance opti-
mization effects. Alternatively, we can aim to suppress this
sensitivity and improve the generalization capability of 3D
feature descriptors. The plus sign in the table has the same
meaning as in Table 1.

Table 2. Ablation of Components.

3DMatch
RR ↑ RE ↓ TE ↓

GeoTransformer [8] 92.0 1.72 0.062
GeoTransformer + GeoTransformer 92.7 1.65 0.057

our 94.5 1.56 0.050

Table 3. Registration results based on FCGF [4].

Methods RR↑ RE↓ TE↓
FCGF [4] 67.9 2.20 0.078
SC2-PCR [3] 93.1 2.09 0.065
PointDSC† [1] 91.8 2.10 0.065
VBReg† [6] 82.7 2.14 0.067
MAC [15] 93.7 2.02 0.060
FastMAC [16] 92.6 2.00 0.064
our 76.2 2.07 0.055

3. Limitations
While our method achieves certain improvements over cer-
tain low-accuracy approaches, its performance is inferior
to other outlier removal methods, as indicated in Table 3.
† represents the learning-based method. Specifically, we
use FCGF to generate the initial transformations and evalu-
ate our method with other outlier removal approaches. Al-
though the registration recall achieved by our method was
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Figure 1. Registration visualization results.
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Figure 2. Registration visualization results.

lower than expected, the results remain competitive when
evaluated on the RR and ER metrics. Furthermore, our ap-
proach still achieves an 8.3% improvement over the base-
line FCGF approach. These results are consistent with what
we mentioned in the introduction: incorrect initial trans-
formations can lead to large parallax, which in turn af-
fects the accuracy of correspondences obtained through dif-
fusion features. This motivates us to explore multi-view
approaches in the future to reduce parallax and mitigate
the impact of erroneous initialization. Additionally, our
method requires more time compared to other approaches
due to the necessity of executing multiple reverse diffu-
sion processes. However, recent research in accelerated
sampling techniques and parallel computation architectures
suggests that future implementations could achieve a bal-
ance between computational efficiency and generative per-
formance.

4. Visualizations
We show more registration results in Figure 1, Figure 2,
Figure 3 and Figure 4. These images demonstrate the
registration results of our method on other paired point
cloud examples. As shown, our approach achieves visually
compelling results comparable to those of other refinement
methods.

Table 4. Results on different depth map generation strategies.

Method RR↑ RE↓ TE↓
w/o depth 92.0 1.72 0.06
Generated from RGB images 93.4 1.62 0.06
Generated from point cloud (ours) 94.5 1.56 0.05

5. Ablation of different depth map generation
strategies

The depth maps used in our method are not acquired from
dedicated depth sensors, but are projected from point cloud
data already available during training and testing. This
avoids any additional hardware cost and does not limit de-
ployment feasibility.

To evaluate the effectiveness of the depth obtained by
different depth map generation methods, we tested our
method with depth maps estimated from single-view RGB
images (see Table 4). The results show that while both
depth variants outperform the depth-free baseline, depth
maps generated from RGB images yield slightly lower per-
formance compared to those projected from point clouds.
This is expected, as our point cloud-derived depth maps are
reconstructed from multi-view geometry, providing more
accurate and detailed spatial cues than single-view RGB-



GT Ours RANSAC-50K SC2-PCR

PointDSC VBReg SC2PCR++ MAC FastMAC

Reference

Source

Figure 3. Registration visualization results.
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Figure 4. Registration visualization results.

based estimations. Nonetheless, this experiment demon-
strates that our method remains effective with estimated
depths, making it adaptable to real-world settings where
RGB input is available.

6. Ablation of Running Time

Our runtime analysis on 3DMatch (Table 5) shows higher
latency due to ControlNet’s iterative denoising steps (2×
slower than ZeroReg). However, this trade-off enables sig-
nificant performance gains (Table 6). Notably, recent re-
search has increasingly focused on optimizing diffusion
processes, including fast samplers (e.g., Analytic-DPM [2])

and timestep distillation techniques (e.g., SDXL Turbo [9]),
demonstrating the potential to reduce time.

7. Comparison with other non-refine-based
point cloud registration methods

We first compare our method with the zero-shot registra-
tion SOTA method, ZeroReg [14]. While both ZeroReg and
our method adopt zero-shot point cloud registration frame-
works, our approach is distinguished by the integration
of diffusion models as 2D image feature extractors. This
strategy is validated in semantic correspondence estima-
tion [12, 13]. Experiments on 3DMatch (Table 6) show that



our approach yields a 10.1% improvement over ZeroReg,
demonstrating the effectiveness of diffusion features.

Furthermore, for the supervised SOTA method
PSReg [5], we do not exceed its performance (Table 6)
which is consistent with the limitation of training-free
refinement frameworks. Specifically, PSReg employs
end-to-end supervised training, whereas our method refines
correspondences from the GeoTranformer baseline, whose
performance is slightly inferior to PSReg. Critically, our
method is model-agnostic: it can be seamlessly integrated
with any SOTA registration backbone (e.g., replacing Geo-
Transformer with stronger baselines), offering flexibility to
bridge this performance gap in future work.

Table 5. Running time on 3DMatch.

MAC ZeroReg Ours
Time(s) 16.4 11.2 23.1

Table 6. Comparison with ZeroReg and PSReg on 3DMatch.

Metric ZeroReg PSReg MAC Ours
RR↑ 84.4 95.7 93.8 94.5

8. Comparison on other datasets
Following the Buffer-X framework [10], we conducted a
cross-dataset evaluation on ETH [7] and WOD [11]. De-
spite the unavailability of the original test sets in Buffer-
X, experimental results on subsets from publicly available
ETH and WOD datasets demonstrate a +1.8% RR improve-
ment on ETH and +1.5% RR on WOD (Table 7), which
verifies the robustness of our method across sensors and
scenes.

Table 7. Comparison of additional datasets.

Method ETH WOD
RR↑ RE↓ TE↓ RR↑ RE↓ TE↓

GeoTR [8] 93.9 8.41 0.613 90.1 8.16 4.661
Ours 95.7 6.70 0.544 91.6 8.37 3.908
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