Reducing Unimodal Bias in Multi-Modal Semantic Segmentation with
Multi-Scale Functional Entropy Regularization
—Supplementary Material—

Xu Zheng!?
Danda Pani Paudel?

LAI Thrust, HKUST(GZ)

1. Related Work

1.1. Multi-modal Semantic Segmentation

Multi-modal Semantic Segmentation seeks to combine
RGB with complementary modalities such as depth [4, 7,
8, 11, 12, 21-23, 27-30, 36, 54], thermal [6, 10, 18, 25, 26,
33, 34, 41, 42, 46, 56], events [1, 5, 38, 48, 55], and Li-
DAR [2, 13, 14, 19, 31, 35, 37, 57]. Advances in sensor
technology have driven significant progress in multi-modal
fusion [5, 16, 17, 21, 43, 44, 47, 49, 53], evolving from
dual-modality to comprehensive multi-modal systems, like
MCubeSNet [15], which improves scene understanding by
utilizing richer sensor data.

From an architectural standpoint, multi-modal fusion
models are generally classified into three categories: sep-
arate branches [3, 24, 32, 41], joint branches [7, 31], and
asymmetric branches [39, 40]. A common approach in
these models is to treat RGB as the primary modality, while
auxiliary sensors provide additional information. For in-
stance, CMNeXT [40] prioritizes RGB, incorporating other
sensors to supplement the data. However, RGB alone may
be insufficient, particularly in challenging conditions like
low light or nighttime. This limitation highlights the need
for more robust fusion models that leverage the strengths of
multiple modalities, minimizing dependence on any single
sensor. In this context, Liu et al. [20] introduced the concept
of modality-incomplete scene segmentation, addressing de-
ficiencies at both the system and sensor levels. In contrast to
these works focused on architectural design, our approach
in this paper aims to achieve balanced multi-modal training
without introducing additional parameters. To accomplish
this, we apply a plug-and-play regularization term to exist-
ing semantic segmentation backbones. The regularization
term is achieved at both the high-level feature and output
prediction levels, maximizing the potential of multi-scale
segmentation backbones.
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1.2. Unimodal Bias

A key challenge in multi-modal tasks, especially for multi-
modal semantic segmentation, is unimodal bias, where
where models favor one modality over others, leading to
suboptimal performance. Specifically, when the frame cam-
era is included in the evaluation, the performance signifi-
cantly increases. However, when it is missing, the perfor-
mance drops sharply. This bias arises when models prior-
itize the most easily learnable or information-rich modal-
ity under specific conditions, neglecting the complemen-
tary benefits of other modalities. This can lead to a signifi-
cant degradation in performance when the dominant modal-
ity is missing or unreliable [20, 50, 52], such as in cases
of RGB corruption or thermal sensor noise, which can
be particularly problematic for safety-critical applications
like autonomous navigation. Several strategies have been
proposed to address unimodal bias in multi-modal learn-
ing [50, 52]. Traditional multi-modal fusion models often
do not explicitly regulate how each modality contributes to
the final predictions, which can lead to over-reliance on
a single input. Recent works, such as MAGIC [52] and
Any2Seg [50] have sought to address this limitation by in-
troducing well-designed training objectives.

In multi-modal learning, methods [45, 51] often draw
from information theory, particularly the concept of func-
tional entropy [9]. Entropy-based approaches quantify a
model’s uncertainty in its reliance on different modali-
ties. A system with high entropy distributes its “attention”
evenly across modalities, while low entropy signals an over-
reliance on a single modality. Building on the application of
functional Fisher information in visual question answering
tasks [9], directly applying this approach to semantic seg-
mentation presents challenges. Unlike visual question an-
swering, which focuses on interpreting questions based on a
single modality, segmentation tasks require the integration
of both spatial and contextual information across multiple
modalities. To address this, we introduce multi-scale reg-



ularization terms at both the feature and prediction levels.
These regularization terms provide a principled framework
to mitigate unimodal bias, encouraging a more balanced uti-
lization of all available sensors. This ensures that models
maintain accuracy even in scenarios where certain modali-
ties degrade or fail—an essential consideration in environ-
ments with unreliable or variable sensor performance.

2. Experimental Details.

2.1. Datasets

DELIVER [40] is a large-scale multi-modal segmentation
dataset which includes Depth, LiDAR, Views, Event, RGB
data, based on the CARLA simulator. DELIVER [40] pro-
vides cases in two-fold, including four environmental con-
ditions and five partial sensor failure cases. For environ-
mental conditions, there are cloudy, foggy, night, and rainy
weather conditions as well as the sunny days. The envi-
ronmental conditions cause variations in the position and
illumination of the sun, atmospheric diffuse reflections, pre-
cipitation, and shading of the scene, introducing challenges
for robust perception. For sensor failure cases, there are
Motion Blur, Over-Exposure, and Under-Exposure com-
mon for RGB cameras, LiDAR-Jitter for LiDAR sensor
and Event Low-resolution for event camera. MCubeS is
a multi-modal dataset with pairs of RGB, Near-Infrared
(NIR), Degree of Linear Polarization (DoLP), and Angle
of Linear Polarization (AoLP) of 20 category segmenta-
tion annotations. It has 302/96/102 image pairs for train-
ing/validation/testing at the size of 1224 x 1024.

2.2. Implementation Details.

We train our method on 8 x H100 GPUs with an initial
learning rate of 6e~°, which is scheduled by the poly strat-
egy with power 0.9 over 200 epochs. The first 10 epochs
are to warm-up with 0.1 x the original learning rate. We
use AdamW optimizer with epsilon 1e=8, weight decay
le~2, and the batch size is 1 on each GPU. The images
are augmented by random resize with ratio 0.5-2.0, ran-
dom horizontal flipping, random color jitter, random gaus-
sian blur, and random cropping to 1024 x 1024 on DE-
LIVER [16, 40, 50, 51]. ImageNet-1K pre-trained weight
is used as the pre-trained weight.

2.3. Metrics

To evaluate the performance of our MAGIC framework,
three metrics are utilized, including Intersection over Union
(ToU), F1 score, and Accuracy (Acc). IoU, also known as
the Jaccard index, measures the overlap between the pre-
dicted segmentation and the ground truth segmentation. It
is calculated by dividing the intersection of the two segmen-
tation maps by their union. IoU ranges from 0 to 1, with
a higher value indicating better segmentation performance.

Acc measures the percentage of correctly classified pixels
in the segmentation map. It is calculated by dividing the
number of correctly classified pixels by the total number of
pixels in the segmentation map. Accuracy ranges from O to
1, with a higher value indicating better segmentation perfor-
mance.

3. Additional Experimental Results

We evaluate the performance of our method on the real-
world DELIVER dataset, focusing on dual-modality fusion
in semantic segmentation tasks. Table | summarizes the
validation results using two modality combinations: RGB-
Depth and RGB-Event. For the RGB-Depth fusion task,
our method achieves a mean Intersection over Union (IoU)
of 60.37%, outperforming both CMNeXt (22.81%) and
MAGIC (54.39%) by a significant margin. Notably, our ap-
proach yields the best performance when combining both
modalities (66.46%) and shows a substantial improvement
in RGB modality (55.04%) compared to MAGIC (37.26%).
Although the improvement in Depth modality (59.60%) is
smaller than MAGIC’s (59.02%), the overall performance
boost over the state-of-the-art (SOTA) methods is +5.98.

In the RGB-Event fusion task, our method achieves
a mean IoU of 47.42%, which is higher than CMNeXt
(21.92%) and MAGIC (43.76%). While our method shows
a slight drop in RGB modality (56.90% vs. MAGIC’s
58.00%), it outperforms MAGIC significantly in the Event
modality (29.21% vs. 14.81%), resulting in a combined per-
formance of 56.06, which is just -2.42% below MAGIC’s
58.48%. The overall improvement over SoTA in this case is
+3.66%. These results demonstrate the robustness and ef-
fectiveness of our approach in handling multi-modal data,
providing more balanced and improved segmentation per-
formance compared to current state-of-the-art methods.

We evaluate the performance of our method on the real-
world MCubeS dataset for dual-modality semantic segmen-
tation. Table 2 presents the validation results for three dif-
ferent modality combinations: Image-Aolp, Image-Dolp,
and Image-Nolp. For the Image-Aolp fusion task, our
method achieves a mean IoU of 46.24%, outperforming
both CMNeXt (11.68%) and MAGIC (34.49%). Specif-
ically, our method yields a combined performance of
50.65, with a significant improvement in the Aolp modality
(39.15%), whereas MAGIC’s Aolp performance is 0.27%.
The overall improvement over state-of-the-art methods is
+11.75%, with our method outperforming MAGIC in the
Aolp modality by +38.88%. In the Image-Dolp fusion
task, our method achieves a mean IoU of 39.89%, sur-
passing CMNeXt (12.00%) and MAGIC (33.32%). Our
method shows strong performance in both Image (48.23%)
and Dolp (21.13%) modalities, with a combined IoU of
50.31. This results in an improvement of +6.57 over
the state-of-the-art. For the Image-Nolp fusion task, our
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Figure 1. Balanced multi-modal performance comparison between ours and MAGIC [52] on (a) DELIVER, (b) MCubeS, and (c) MUSES.

Table 1. Results of anymodal semantic segmentation validation
with dual modalities on real-world benchmark DELIVER dataset.

Table 2. Results of anymodal semantic segmentation validation
with dual modalities on real-world benchmark MCubeS dataset.

| publication RGB-Depth Fusion

‘ Publication Image-Aolp Fusion

Method ‘ ‘ Mean Method ‘ ‘ Mean

\ | RGB | Dpeth | Both | \ | Image | Aolp | Both |
CMNeXt | CVPR2023 | 1.60 | 144 | 63.58 | 22.81 CMNeXt | CVPR2023 | 399 | 174 | 2931 | 1168
MAGIC | ECCV 2024 | 37.26 | 59.02 | 66.89 | 54.39 MAGIC | ECCV 2024 | 5145 | 027 | 51.45 | 34.49
Ours \ - | 55.04 | 59.60 | 66.46 | 60.37 Ours \ - | 48.93 | 39.15 | 50.65 | 46.24
w.rt. SoTA | - | +17.58 | +0.58 | -0.43 | +5.98 w.rt. SoTA | - | -2.52 | +38.88 | -0.80 | +1L.75
Method | Publication | ROB-EventFusion |y . Method | Publication | I™2ge-DolpFusion |y

\ | RGB | Event | Both | \ | Image | Dolp | Both |
CMNeXt | CVPR2023 | 4.82 | 345 | 5748 | 21.92 CMNeXt | CVPR2023 | 226 | 071 | 33.02 | 12.00
MAGIC | ECCV 2024 | 58.00 | 14.81 | 58.48 | 43.76 MAGIC | ECCV 2024 | 49.93 | 0.06 | 49.96 | 33.32
Ours \ - | 5690 | 29.21 | 56.06 | 47.42 Ours \ - | 4823 | 21.13 | 50.31 | 39.89
w.rt. SoTA | = | -L10 | +14.40 | 242 | +3.66 w.rt. SoTA | - | -0.70 | +21.07 | +0.35 | +6.57
Method | Publication | 1mageNolpFusion | o

hod achieves a mean IoU of 38.76, again outperform- ‘ ‘ [mage ‘ Nolo ‘ Boh ‘
gllthMNeXt(IZ.SS%) and MAGIC (35.31%). Our method CMNeXt | CVPR2023 | 2.04 | 153 | 3339 | 1235
shows solid performance in the Nolp modality (16.63%) MAGIC | ECCV2024 | 5120 | 3.03 | 5169 | 3531
and combines well with the Image modality (48.49%), re- Ours \ - | 4849 | 16.63 | 51.17 | 38.76
sulting in a combined IoU of 51.17%, with an improve- w.rt. SoTA | - | 271 | +13.60 | -0.52 | +345

ment of +3.45% over state-of-the-art methods. These re-
sults demonstrate the effectiveness of our approach, pro-
viding substantial improvements in dual-modality seman-
tic segmentation tasks across multiple modality combina-
tions. Our method consistently outperforms existing meth-
ods, offering a more balanced and robust segmentation per-
formance on the MCubeS dataset.

4. Additional Ablation Study

Unimodal Bias As shown in Fig.1, our method demon-
strates improved performance compared to other meth-
ods, such as MAGIC[52], which aim to achieve balanced
cross-modal performance. Specifically, while MAGIC
(represented by the green line) exhibits notable unimodal
bias, with large fluctuations in performance across differ-
ent modality combinations, our method (represented by the

red line) shows more consistent and stable performance.
MAGIC has an average mloU of 40.49% with a high stan-
dard deviation of 22.36%, indicating significant sensitivity
to certain modality pairs. In contrast, our method achieves a
higher mean mloU of 48.05% with a much smaller standard
deviation of 7.91%, highlighting its robustness across vary-
ing modality combinations. This trend further underscores
the absence of unimodal bias in our approach, as it handles
all modality combinations effectively. On the other hand,
MAGIC suffers from considerable fluctuations, particularly
in some modality pairs, as seen in the figure. The shaded
areas around the curves further emphasize the reduced vari-
ability in our method, demonstrating its stability and reli-
ability in achieving balanced performance across different
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Figure 2. Functional fisher information and segmentation perfor-
mance across training with our proposed regularization terms on
MUSES dataset.
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Figure 3. Functional fisher information and segmentation perfor-
mance across training with our proposed regularization terms on
MCubeS dataset.

modalities.

Fisher Information and Performance across Training
Fig. 2 shows the segmentation performance across training
with our proposed regularization terms on the DELIVER
dataset. The plots demonstrate the impact of the multi-
scale regularization terms on model performance with dif-
ferent modality combinations, measured by the evaluation
score (mloU) at each training step. This ablation study
demonstrates that the proposed regularization terms leads
to consistent improvements in segmentation performance
across any modality combinations. Particularly, the use
of multi-scale regularization terms results in more stable
and progressively better performance across training, re-
inforcing the effectiveness of our approach. Meanwhile,
Fig. 2 and Fig. 3 show similar results on the MUSES and
MCubeS datasets, respectively. These findings across mul-
tiple datasets and modality combinations confirm that our
proposed regularization terms, particularly when applied at
multiple scales, significantly enhance model stability and
overall segmentation performance.

Qualitative Results Figure 4 presents qualitative results
comparing the performance of our method with the base-
line methods CMNeXt and MAGIC under various weather
conditions: cloudy, night, rain, and sun. For each condition,
the results show the input image, the event data, the ground
truth (GT), and the predictions using different regularization
terms: RDEL, DEL, EL, and E.

- Cloudy Weather: In this condition, CMNeXt and
MAGIC struggle with some occlusions and areas with poor
visibility, as seen in the noisy predictions (e.g., in the middle
and lower parts of the road). Our method, on the other hand,
shows significantly cleaner and more accurate segmenta-
tion, particularly when using the RDEL and DEL combina-
tions, providing consistent road and vehicle segmentation.

- Night Condition: At night, CMNeXt fails to properly
segment the road and vehicles, with much of the road ap-
pearing unclear in the predictions. MAGIC also shows sim-
ilar challenges, especially in low-light areas. Our method,
particularly with DEL and RDEL regularization, performs
better by handling the lighting variation more effectively
and maintaining the structure of the road and vehicle fea-
tures.

- Rain Weather: Under rainy conditions, CMNeXt and
MAGIC both struggle with poor visibility, resulting in over-
segmented or under-segmented areas in the road and sur-
roundings. Our method shows a clear improvement in han-
dling the noise introduced by rain, providing more accurate
segmentations, especially when using the DEL and EL reg-
ularization terms.

- Sun Condition: In bright sunlight, CMNeXt and
MAGIC still show poor segmentation quality, with road fea-
tures and vehicles becoming poorly defined. Our method,
however, successfully segments the road and vehicles un-
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Figure 4. Comparison.

der challenging lighting conditions, with RDEL and DEL
providing the most robust segmentation results.

Overall, our method outperforms both CMNeXt and
MAGIC in all weather conditions, providing more accurate
and stable segmentation. The use of multi-modal data and
regularization terms, particularly RDEL and DEL, plays
a crucial role in achieving consistent segmentation perfor-
mance across varying environmental factors.
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