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A. Implementation Details

A.1. Descriptions of Attacks

Transfer-based Self-Ensemble Attack (T-SEA) [7] pro-
poses a black-box attack framework against object detec-
tors, which employs self-ensemble strategies (constrained
data augmentation, model ShakeDrop, and patch cutout) to
enhance the transferability of adversarial patches. Given
the excellent attack performance of T-SEA, we adopt three
different patch update strategies from the original work
(Adam, mim, and pgd) to derive three attack methods: T-
SEA, T-SEA-mim, and T-SEA-pgd.
Adversarial Texture (AdvTexture). [6] presents a genera-
tive technique designed for multi-angle adversarial attacks.
It initially trains an expandable generator and then opti-
mizes the input latent variable while keeping the generator’s
parameters fixed, thereby enabling effective manipulation
of the generated texture to deceive detectors across various
viewpoints. We adopt two patch generation strategies from
the original paper, differing in whether a generator is used,
resulting in two attack methods: TC-EGA and TCA.
adversarial patches (AdvPatch) [27] proposes an ap-
proach to create adversarial patches that can fool person
detection systems. Patches are optimized to reduce the con-
fidence of person detections, with total variation loss em-
ployed to generate smoother patches. To ensure physical
realizability, non-printability score loss is utilized. Further-
more, transformations such as rotation and scaling are ap-
plied to the patch to enhance its robustness. We select the
most effective loss function from the original paper, namely
the object confidence score, as the optimization objective
for the patch, resulting in the attack method: AdvPatch.
GAN-based naturalistic adversarial patch (GNAP) [5]
proposes a method for generating naturalistic adversarial
patches (NAPs) by leveraging pre-trained Generative Ad-
versarial Networks (GANs) [12]. It searches for an input
latent vector corresponding to a generated patch, which is
visually natural while effectively deceiving the detectors.
We adopt the dog pattern showcased in the original paper as
the attack patch, resulting in the attack method: GNAP.
DM-based naturalistic adversarial patch (DM-
NAP) [14] proposes a novel method for generating
NAPs using the diffusion model [22]. Adversarial opti-
mization is performed by backpropagating gradients from
the victim object detector to iteratively update the diffusion
model’s latent representation, enhancing the patch’s effec-
tiveness for adversarial attacks while preserving its natural

appearance. We adopt the Pomeranian image showcased
in the original paper as the attack pattern and apply Stable
Diffusion v1.4, resulting in the attack method: DM-NAP.
Adversarial Cloaks (AdvCloak) [29] optimizes adversar-
ial patches to suppress person detection by applying thin-
plate-spline (TPS) transformations, along with other aug-
mentations like scaling and rotation, to enhance robustness
against real-world distortions. Using the YOLOv2 [20] and
YOLOv3 [19] as examples, we reproduce the AdvCloak.
Adversarial T-shirts (AdvTshirt) [31] presents an
optimization-based approach for generating adversarial T-
shirts. To fool a single detector, the method uses combining
transformations, including perspective and TPS transforma-
tions. Using the YOLOv2 [20] as an example, we reproduce
the AdvTshirt.
Appearing Attack (AA) [32] introduces feature-
interference reinforcement and enhanced realistic con-
straints to improve adversarial example generation.
Additionally, it utilizes nested adversarial examples to en-
hance robustness against real-world factors such as varying
distances, angles, backgrounds, and lighting conditions.
We set the target of the patch to “person” and reproduce AA
on the YOLOv2 [20].
Adversarial Sticker (AdvSticker) [2] is an image-
independent adversarial patch that, when placed anywhere
in a scene, forces a classifier to predict a target class, making
it effective for physical-world attacks without environmen-
tal constraints. We set the target of the patch to “person”
and reproduce AdvSticker on the YOLOv3 [19]. Universal
Physical Camouflage (UPC) [8] is a physical adversarial
attack that generates category-agnostic camouflage patterns
to deceive object detectors. Unlike instance-specific meth-
ods, it disrupts RPN, classification, and regression to in-
duce mislocalization and misclassification. We use the dog-
shaped constraint and reproduce UPC on the YOLOv3 [19].

A.2. Descriptions of Defenses
Segment and Complete defense (SAC) [17] trains a U-
Net [23] as the patch segmenter for defending object de-
tectors against patch attacks through detection and removal
of adversarial patches, with a self adversarial training algo-
rithm to improve robustness. In this evaluation, we repro-
duce the source code using the model weights and parame-
ters provided in the original paper.
Patch-Agnostic Defense (PAD) [10] proposes a novel ad-
versarial patch localization and removal method that does
not require prior knowledge or additional training, based on



YOLOv2 YOLOv3 YOLOv4 YOLOv5 YOLOv7 SSD CenterNet RetinaNet MRCNN FRCNN DDETR
T-SEA [7] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

T-SEA-mim [7] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
T-SEA-pgd [7] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
TC-EGA [6] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

TCA [6] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Advpatch [27] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

GNAP [5] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
DM-NAP [14] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
AdvCloak [29] ✓ ✓
AdvTshirt [31] ✓

AA [32] ✓
AdvSticker [2] ✓

UPC [8] ✓

Table 1. The 94 types of patches in our Adversarial Patch Defense Evaluation (APDE) dataset spanning 13 attack methods and 11 detectors.

semantic independence and spatial heterogeneity. In this
evaluation, we select Segment Anything Model (SAM) [13]
ViT-L version as the segmenter using the parameters pro-
vided in the original paper.
Adversarial YOLO (Adyolo) [9] proposes an efficient and
effective plug-in defense component for the YOLO detec-
tion system. The core idea is to introduce a patch class into
the YOLO architecture, resulting in only a minimal increase
in inference time. In this evaluation, to ensure fairness in
comparison and maintain a white-box attack scenario, we
convert the predictions of the patch class into a mask and ap-
ply the same patch filling methods used by other defenses.
NAPGuard [28] provides robust detection capabilities
against naturalistic adversarial patches (NAPs) through a
meticulously designed critical feature modulation frame-
work: the aggressive feature aligned learning and the nat-
ural feature suppressed inference. In this evaluation, we re-
produce and train the NAPGuard model using the parame-
ters from the original paper on the GAP dataset [28].
Diffusion-Based Adversarial Defense (DIFFender) [11]
proposes a novel defense method that leverages a text-
guided diffusion model to defend against adversarial
patches. DIFFender uses two well-designed prompts to
achieve patch localization and restoration. As the original
paper’s code is incomplete, we reproduce DIFFender model
as faithfully as possible based on the paper, along with the
key parts and parameters provided in the available code.
NutNet [16] proposes an innovative model called NutNet
for detecting adversarial patches, with high generalization,
robustness, and efficiency. Image-splitting and Destructive
Training are introduced to enhance the model’s ability to
reconstruct only the images from a specific clean distribu-
tion, which allows for precise identification and masking of
patches. In this evaluation, we reproduce NutNet using the
source code provided in the original paper and select the
AutoEncoder32 [16] model for testing.
Local Gradients Smoothing (LGS) [18] estimates noise
locations in the gradient domain and transforms high-

activation regions caused by adversarial noise in the image
domain, while minimizing the impact on salient objects crit-
ical for accurate classification. Since most current patches
are optimized using the total variation loss function, pixel-
level smoothing at the image domain is insufficient to effec-
tively eliminate patches. For the sake of fairness in evalua-
tion, we adopt the same patch filling methods used by other
defenses.
Zmask [24] utilizes Z-score analysis on internal network
features to detect and mask pixels corresponding to adver-
sarial objects in the input image, in order to enhance the
adversarial robustness of DNNs against physically realiz-
able adversarial attacks. In this evaluation, we reproduce
Zmask using the source code provided in the original paper,
with model initialization on the INRIA-Person [4] and MS
COCO [15] test datasets.
Jedi [26] detects regions with high entropy and uses an au-
toencoder that can complete patch regions from high en-
tropy kernels to resist patches. In this evaluation, we repro-
duce the source code using the model weights and parame-
ters provided in the original paper.
ObjectSeeker [30] is a certifiably robust defense against
patch attacks in object detection. It uses patch-agnostic
masking to remove adversarial patches without prior knowl-
edge of their shape, size, or location, allowing safe detection
with any standard detector.

A.3. Additional Experimental Settings
Patch Acquisition. To ensure diverse patch distributions,
we construct the large-scale Adversarial Patch Defense
Evaluation (APDE) dataset, which includes 2 attack goals,
13 patch attack types, and 11 object detectors. As shown in
Tab. 1, a total of 94 adversarial patches are trained. When
the APDE dataset is used to retrain defense methods, Adv-
Cloak [29], AdvTshirt [31], and AA [32] are excluded from
the training set, allowing for an evaluation of the defense
methods’ robustness against out-of-domain patches. Adv-
Cloak [29], AdvSticker [2], and UPC [8] are trained to eval-



Model (w/o defense) SAC [17] PAD [10] Adyolo [9] NAPGuard[28] DIFFender[11] NutNet [16] LGS [18] Zmask [24] Jedi [26]
YOLOv2 (82.19) 82.19 81.45 82.19 82.19 76.54 79.08 78.51 79.72 77.36
YOLOv3 (96.87) 96.87 95.21 96.87 96.87 90.05 93.90 91.98 95.35 92.66
YOLOv4 (94.36) 94.36 93.48 94.36 94.36 89.56 92.15 88.68 93.29 89.03
YOLOv5 (94.90) 94.90 94.72 94.90 94.90 92.55 93.17 88.89 93.47 90.30
YOLOv7 (95.58) 95.58 90.58 95.58 95.58 84.26 87.20 88.97 93.40 92.32

SSD (81.28) 81.28 80.03 81.28 81.28 78.89 79.35 73.90 79.70 75.91
CenterNet (92.10) 92.10 91.77 92.10 92.10 85.26 87.44 82.16 89.70 85.04
RetinaNet (96.03) 96.03 95.24 96.03 96.03 89.18 93.35 90.78 94.35 91.49
MRCNN (97.20) 97.20 96.42 97.20 97.20 94.68 96.08 92.60 95.84 94.16
FRCNN (96.92) 96.92 96.81 96.92 96.92 94.79 95.56 92.84 95.55 93.51
DDETR (92.23) 92.23 89.82 92.20 92.10 76.31 86.25 83.77 90.55 84.71
Overall (92.70) 92.70 91.41 92.69 92.68 86.55 89.41 86.64 90.99 87.86

Table 2. Comparison of the impact of each defense on clean images, i.e., without patches. We report person AP@0.5.

uate the robustness of defense methods against adversarial
patches of diverse shapes.

Data Acquisition. For this evaluation, we randomly select
1000 positive samples from the testing sets of the widely
used INRIA-Person [4] (288 images) and MS COCO [15]
(2693 images) datasets for object detection, serving as the
source data. These positive samples are utilized to generate
hiding attack patches, while negative samples from the test-
ing sets are employed as backgrounds for appearing attack
patches, resulting in 94,000 images in total. The dataset is
divided into a training set (56,400 images) and a testing set
(37,600 images), following a 6:4 ratio.

Data Properties. All images are stored in PNG format with
a fixed size of 416 × 416 pixels, achieved through padding
or resizing, aligning with the settings described in the re-
spective papers. For all hiding attack patches, we apply the
patches to every person labeled in the positive samples, at-
taching the patch to each person. For the appearing attack,
we apply the patches to random locations in the negative
samples, with patch sizes ranging from 30 to 80 pixels in
length. Instead of heavy human annotations, all adversar-
ial patches are automatically labeled with detection boxes
and masks during dataset generation, making them readily
available for training or evaluating defense methods.

Adaptive Attacks Properties. Adaptive attacks refer to
scenarios where the adversary possesses full knowledge of
the defense model’s parameters and design details, enabling
them to tailor specific attacks that exploit the model’s vul-
nerabilities. The susceptibility of different defense models
to adaptive attacks varies significantly. For instance, some
defenses are inherently more prone to adaptive attacks due
to their architectural characteristics. In this study, we ana-
lyze 10 defense methods, among which 5 explicitly discuss
adaptive attacks (SAC [17], Zmask [24], Jedi [26], DIFF-
ender [11], and NutNet [16]) against themselves in their
original papers. For these 5 methods, we directly repli-
cate the original adaptive attacks as part of our evaluation.
For the remaining defense methods, we designed adaptive
attacks to maximally compromise their defensive perfor-

mance, ensuring the most potent adversarial impact under
the defined threat model. For defenses based on patch de-
tection or segmentation: Adyolo [9] and NAPGuard [28]
have gradient-traceable defense models. Thus, we incorpo-
rate their defense model outputs into the loss function to
train adaptive attack patches. PAD [10], however, relies on
the SAM model with non-traceable gradients. To circum-
vent this, we focus on its dependency on semantic differ-
ences and spatial differences, constraining the adversarial
patch to maintain semantic and spatial consistency with its
surrounding context. For defenses based on prior knowl-
edge of patches: LGS [18] localizes patches by detecting
pixel-level discontinuities. We integrate patch smoothness
into the loss function to train adaptive attacks that evade its
detection mechanism.

B. Additional Experimental Results
shou dao Here, we provide more detailed experimental re-
sults. First, in Sec B.1, we present how defense methods
impact clean sample detection. We then assess robustness
against diverse patch shapes in Sec B.2, and further ana-
lyze cross-dataset generalization in Sec B.3. Additionally,
Sec B.4 compares patch erasure techniques, while Sec. B.5
focuses on defenses against appearing attacks. Further-
more, Sec B.6 provides an additional analysis of patches
bypassing defenses. Finally, Sec B.7 provides comprehen-
sive results for individual attacks.

B.1. Defenses Impact on Clean Samples
The primary goal of defense methods is to mitigate the im-
pact of adversarial patches on normal detection while min-
imizing their own effect on the detection of clean images.
As shown in Tab. 2, we measure the impact of each defense
method on clean images without attack patches. We find
that SAC [17], Adyolo [9], and NAPGuard [28] have al-
most no impact on the detection of clean samples, whereas
other defense methods affect the detector’s performance to
varying degrees. This phenomenon is directly related to the
robustness of the defense methods. In the main text, we re-



Defense T-SEA AdvCloak AdvSticker UPC LAPs
SAC [17] 48.89 4.17 40.42 52.36 54.2
PAD [10] 79.85 59.04 78.58 84.19 85.28

Adyolo [9] 67.21 18.29 61.35 69.38 64.54
NAPGuard[28] 78.54 52.21 75.49 74.09 77.36
DIFFender[11] 57.35 27.4 62.74 67.28 61.02

NutNet [16] 81.94 64.14 83.12 82.83 83.42
LGS [18] 67.3 30.56 56.27 71.56 65.69

Zmask [24] 73.35 42.07 70.52 70.06 64.23
Jedi [26] 62.98 35.24 69.24 67.24 64.37

Table 3. Comparison of different defense methods against ad-
versarial patches of diverse shapes(T-SEA [7]: square-shaped,
AdvCloak [29]: rectangular, AdvSticker [2]: circle-shaped,
UPC [8]: dog-shaped, and LAPs [25]: cartoon-patterned). We
report AP@0.5 after defenses, where a lower AP indicates better
defense performance.

veal that defenses like NutNet [16] and LGS [18] tend to
misidentify the background as a patch, exhibiting relatively
poor robustness, which in turn affects the detection of clean
samples to some extent.

B.2. Defense against Diverse Patch Shapes
Existing evaluations of defense methods predominantly
focus on rectangular adversarial patches, yet adversarial
patches can exhibit diverse shapes. For example, circu-
lar patches are utilized in AdvSticker [2], while naturalis-
tic shapes (e.g., dog-shaped patches in UPC [8] or cartoon-
patterned patches in LAPs [25]) further expand the threat
landscape. Evaluating defenses against such irregularly
shaped patches provides critical insight into their general-
ization capability. As illustrated in the figure, we bench-
mark defense performance under four distinct patch shapes.
The results indicate that NutNet [16] and PAD [10] demon-
strate consistent robustness across all patch shapes. In con-
trast, NAPGuard [28] shows degraded performance against
irregularly shaped patches compared to squares and rectan-
gles. This limitation arises because NAPGuard [28] em-
ploys an object detection model that generates bounding
boxes restricted to rectangular shapes for patch localization.
Furthermore, the defense model was trained exclusively on
rectangular patches, significantly limiting its generalization
to irregular shapes during evaluation.

B.3. Cross-Dataset Training Comparison
To compare the efficacy of our APDE dataset with prior
adversarial patch datasets in training defense models, we
select three representative defense methods as test models.
For a fair evaluation, the adversarial patches used in test-
ing (i.e., AdvCloak [29] and AdvTshirt [31]) are excluded
from the training sets. As shown in Tab. 4, our APDE
dataset significantly improves the performance of all three
defense methods, outperforming other datasets. Notably,
models trained on the Apricot [1] dataset exhibit perfor-

SAC [17] Adyolo [9] NAPGuard [28]
original retrained original retrained original retrained

AdvCloak[29]
Apricot[1] 4.17 / 18.29 14.43 52.21 43.85
GAP[28] 4.17 63.19 18.29 21.04 52.21 /

APDE 4.17 71.29 18.29 22.36 52.21 73.16

AdvTshirt[31]
Apricot[1] 34.27 / 8.19 17.31 50.21 41.27
GAP[28] 34.27 45.06 8.19 29.83 50.21 /

APDE 34.27 64.47 8.19 37.53 50.21 70.89

Table 4. Comparison of defense performance before and after
retraining on different datasets. We report the AP@0.5 metric
for each defense method before and after retraining.
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Figure 1. The impact of three patch erasure methods on de-
fenses. We report AP@0.5 for black, gray and inpainted patch
erasure.

mance degradation in certain defenses, highlighting its lim-
itations in generalization.

B.4. Patch Erasure Techniques Analysis
Existing defense methods apply different strategies to han-
dle detected patches. The most common approach is mask
filling, i.e., setting the pixels of the patch region to black
to eliminate the patch’s impact on the victim detector. Re-
ferring to the pre-processing operations for input images in
object detection tasks, padding with a constant pixel value
is commonly used. Some methods like NutNet [16] set
the patch region to gray, that is, a constant pixel value of
[128, 128, 128]. Additionally, some defense methods in-
paint the image for coherent restoration in the patch region.
For example, DIFFender [11] uses stable diffusion [22]
with pre-tuned restoration prompts to restore original pix-
els. Jedi [26] replaces mask pixels (starting from the bound-
ary and moving inward) with a weighted sum of external
pixel values within a certain radius. Since the goal of this
step is to eliminate the patch rather than precisely restore
the original pixels, it is unnecessary to use pixel-perfect but
time-consuming restoration methods. In Fig. 1, we demon-
strate how three different filling methods impact defense
performance. The results show that black filling performs
better than gray filling, while inpainting shows varying re-
sults across different defense methods. Overall, the impact
of the erasure method on defense effectiveness is not sub-
stantial and is largely determined by the performance of the
defense method itself.



YOLOv2 YOLOv3 YOLOv4 SSD MRCNN FRCNN
w/o defense 35.43 23.36 12.93 2.99 1.78 10.59

SAC [17] 18.23 24.07 10.96 7.01 1.79 6.2
PAD [10] 0.0 0.0 0.0 0.0 0.0 0.0

Adyolo [9] 35.13 25.84 14.48 4.65 2.76 13.25
NAPGuard[28] 1.04 0.9 0.23 0.7 0.05 0.03
DIFFender[11] 6.72 11.29 0.81 12.58 0.33 0.86

NutNet [16] 0.0 0.0 0.0 0.0 0.0 0.0
LGS [18] 3.13 2.61 0.09 1.48 0.19 0.79

Zmask [24] 6.5 9.66 5.23 12.01 2.16 2.42
Jedi [26] 19.26 11.31 2.93 3.23 1.41 6.03

Table 5. Results for defense methods against appearing at-
tacks. We report AP@0.5 after defenses, where a lower AP in-
dicates better defense performance.

B.5. Defenses against Appearing Attack Patches

In our previous experiments, the patches discussed are pri-
marily hiding attack patches, applied to the target object to
make it invisible to the victim detectors. However, attackers
can also launch appearing attacks (AA), where the patch is
misclassified as a specific object. Most defense works focus
only on defending against hiding attack patches and have
not explored defenses against appearing attack patches. In
this study, we replicate the AA patch [32] generated based
on YOLOv2 [20]. We apply the patches to negative sam-
ples from the INRIA test set. In contrast to hiding attacks,
the larger the person AP for appearing attacks, the better
the attack and the worse the defense performance. We se-
lect several detectors to test the performance of different de-
fense methods, with results shown in Tab. 5. Only the effect
after Adyolo [9] defense is worse than before the defense.
This is mainly because Adyolo only added the adversarial
patch class on the YOLOv2 [20] model while retaining the
patch detection model’s ability to recognize pedestrians. As
a result, in the appearing attack experiment, Adyolo mis-
classifies the patch as a “person” completely nullifying the
defense effect. The main results show that some defense
methods that perform well against hiding attacks also offer
good defense performance against appearing attack patches.
Therefore, adversarial patch attack goals are not the pri-
mary factor influencing the defense performance.

B.6. More Detailed Analysis on Defense Failures

Previous study [28] suggests that, unlike non-NAPs, the
high-frequency components of NAPs closely resemble their
surroundings, making them more deceptive and challenging
to detect accurately. As illustrated in Fig. 2, we present ad-
ditional frequency-domain component distributions of ad-
versarial patches to further analyze this issue and observe
little differences in the high-frequency components between
NAPs and non-NAPs. Here, we compute the Fréchet Incep-
tion Distance (FID) scores between each of these 5 attacks
and clean samples. Our findings reveal that patches trained
on DDETR [3] and FRCNN [21] still show that non-NAPs
exhibit closer FID scores to each other, suggesting more

similar data distributions, whereas NAPs are more distinctly
distributed.

Although most cases align with the observations de-
scribed above, we identified an exception: the non-NAPs
generated by TC-EGA [6] on YOLOv2 [20] appear more
distinctly distributed compared to other attack patches. As
shown in the attack results in Fig. 2, the patches generated
by TC-EGA on YOLOv2 effectively bypass defenses like
NAPGuard [28] and Adyolo [9]. Therefore, as discussed
in the main text, pre-trained defenses heavily rely on the
diversity of the training data distribution, highlighting the
importance of introducing the APDE dataset with diverse
patch distributions.

B.7. Defense Performance on Individual Attacks
As shown in Fig. 3, the PR curves in these subfigures com-
pare the defense performance of different methods. When
evaluating individual attacks, the performance of differ-
ent defenses varies against the specific attack. For exam-
ple, NAPGuard [28] demonstrates strong defense against T-
SEA [7] and AdvPatch [27], achieving 72.87% and 68.44%
person AP@0.5, respectively, on the YOLOv2 [20] model.
However, its performance against TC-EGA [6] and DM-
NAP [14] is relatively weak, with only 47.48% and 55.92%
person AP@0.5. Therefore, constructing a large-scale ad-
versarial example dataset in a white-box scenario is crucial
for comprehensively and effectively measuring the robust-
ness of defense methods and exploring the most challenging
situations they face.

Additionally, Fig. 4 to 11 illustrate the defense effective-
ness and patch detection results of all evaluated methods
against various attack types. The first row represents im-
ages with adversarial patches, while the second row shows
patch mask images generated by defenses (Green: the true
location of patches. Red: detected patches by the defense.
Blue: the background mistakenly identified as patches).
The first column without defense results in incorrect pre-
dictions (red), while the remaining columns achieve correct
results (blue).
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(a) Patches trained on DDETR [3].
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(b) Patches trained on FRCNN [21].
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(c) Patches trained on YOLOv2 [20].
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(e) Patches trained on FRCNN [21].
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Figure 2. (a)-(c) Frequency domain distribution of patches and (d)-(f) FID scores between patches generated by different attacks.
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(a) T-SEA [7]
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(b) T-SEA-mim [7]
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(c) T-SEA-pgd [7]
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(d) TC-EGA [6]
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(e) TCA [6]
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(f) Advpatch [27]
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(g) GNAP [5]
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(h) DM-NAP [14]

Figure 3. Precision-Recall curves for 9 different defenses against 8 different attack methods.



Figure 4. Comparison of patch detection and defense performance against T-SEA [7] attack patches.

Figure 5. Comparison of patch detection and defense performance against T-SEA-mim [7] attack patches.

Figure 6. Comparison of patch detection and defense performance against T-SEA-pgd [7] attack patches.

Figure 7. Comparison of patch detection and defense performance against TC-EGA [6] attack patches.



Figure 8. Comparison of patch detection and defense performance against TCA [6] attack patches.

Figure 9. Comparison of patch detection and defense performance against Advpatch [27] attack patches.

Figure 10. Comparison of patch detection and defense performance against GNAP [5] attack patches.

Figure 11. Comparison of patch detection and defense performance against DM-NAP [14] attack patches.



References
[1] Anneliese Braunegg, Amartya Chakraborty, and Krumdick.

Apricot: A dataset of physical adversarial attacks on ob-
ject detection. In European Conference on Computer Vision,
pages 35–50. Springer, 2020. 4

[2] Tom B Brown, Dandelion Mané, Aurko Roy, Martı́n Abadi,
and Justin Gilmer. Adversarial patch. arXiv preprint
arXiv:1712.09665, 2017. 1, 2, 4

[3] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In European confer-
ence on computer vision, pages 213–229. Springer, 2020. 5,
6

[4] Navneet Dalal and Bill Triggs. Histograms of oriented gra-
dients for human detection. In 2005 IEEE computer soci-
ety conference on computer vision and pattern recognition
(CVPR’05), pages 886–893. Ieee, 2005. 2, 3

[5] Yu-Chih-Tuan Hu, Bo-Han Kung, Daniel Stanley Tan, and
Chen. Naturalistic physical adversarial patch for object de-
tectors. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision (ICCV), 2021. 1, 2, 6, 8

[6] Zhanhao Hu, Siyuan Huang, Xiaopei Zhu, Fuchun Sun, Bo
Zhang, and Xiaolin Hu. Adversarial texture for fooling
person detectors in the physical world. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 13307–13316, 2022. 1, 2, 5, 6, 7, 8

[7] Hao Huang, Ziyan Chen, Huanran Chen, Yongtao Wang, and
Kevin Zhang. T-sea: Transfer-based self-ensemble attack
on object detection. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
20514–20523, 2023. 1, 2, 4, 5, 6, 7

[8] Lifeng Huang, Chengying Gao, Yuyin Zhou, Cihang Xie,
Alan L Yuille, Changqing Zou, and Ning Liu. Universal
physical camouflage attacks on object detectors. In Proceed-
ings of the IEEE/CVF conference on computer vision and
pattern recognition, pages 720–729, 2020. 1, 2, 4

[9] Nan Ji, YanFei Feng, Haidong Xie, Xueshuang Xiang,
and Naijin Liu. Adversarial yolo: Defense human detec-
tion patch attacks via detecting adversarial patches. arXiv
preprint arXiv:2103.08860, 2021. 2, 3, 4, 5

[10] Lihua Jing, Rui Wang, Wenqi Ren, Xin Dong, and Cong
Zou. Pad: Patch-agnostic defense against adversarial patch
attacks. In 2024 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 24472–24481, 2024.
1, 3, 4, 5

[11] Caixin Kang, Yinpeng Dong, Zhengyi Wang, Shouwei Ruan,
Hang Su, and Xingxing Wei. Diffender: Diffusion-based ad-
versarial defense against patch attacks in the physical world.
arXiv preprint arXiv:2306.09124, 2023. 2, 3, 4, 5

[12] Tero Karras, Samuli Laine, and Timo Aila. A style-based
generator architecture for generative adversarial networks.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 4401–4410, 2019. 1

[13] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,
Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C Berg, Wan-Yen Lo, et al. Segment any-

thing. In Proceedings of the IEEE/CVF International Con-
ference on Computer Vision, pages 4015–4026, 2023. 2

[14] Shuo-Yen Lin, Ernie Chu, Che-Hsien Lin, Jun-Cheng Chen,
and Jia-Ching Wang. Diffusion to confusion: Naturalistic ad-
versarial patch generation based on diffusion model for ob-
ject detector. arXiv preprint arXiv:2307.08076, 2023. 1, 2,
5, 6, 8

[15] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
and Perona. Microsoft coco: Common objects in context. In
European Conference on Computer Vision, pages 740–755.
Springer, 2014. 2, 3

[16] Zijin Lin, Yue Zhao, Kai Chen, and Jinwen He. I don’t
know you, but i can catch you: Real-time defense against di-
verse adversarial patches for object detectors. arXiv preprint
arXiv:2406.10285, 2024. 2, 3, 4, 5

[17] Jiang Liu, Alexander Levine, Chun Pong Lau, Rama Chel-
lappa, and Soheil Feizi. Segment and complete: Defending
object detectors against adversarial patch attacks with robust
patch detection. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
14973–14982, 2022. 1, 3, 4, 5

[18] Muzammal Naseer, Salman Khan, and Fatih Porikli. Local
gradients smoothing: Defense against localized adversarial
attacks. In 2019 IEEE Winter Conference on Applications of
Computer Vision (WACV), pages 1300–1307, 2019. 2, 3, 4,
5

[19] Joseph Redmon. Yolov3: An incremental improvement.
arXiv preprint arXiv:1804.02767, 2018. 1

[20] Joseph Redmon and Ali Farhadi. Yolo9000: better, faster,
stronger. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7263–7271, 2017. 1,
5, 6

[21] Shaoqing Ren. Faster r-cnn: Towards real-time object
detection with region proposal networks. arXiv preprint
arXiv:1506.01497, 2015. 5, 6

[22] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 10684–10695, 2022. 1, 4

[23] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
net: Convolutional networks for biomedical image segmen-
tation. In Medical image computing and computer-assisted
intervention–MICCAI 2015: 18th international conference,
Munich, Germany, October 5-9, 2015, proceedings, part III
18, pages 234–241. Springer, 2015. 1

[24] Giulio Rossolini, Federico Nesti, Fabio Brau, Alessandro
Biondi, and Giorgio Buttazzo. Defending from physically-
realizable adversarial attacks through internal over-activation
analysis. Proceedings of the AAAI Conference on Artificial
Intelligence, 37(12):15064–15072, 2023. 2, 3, 4, 5

[25] Jia Tan, Nan Ji, Haidong Xie, and Xueshuang Xiang. Legit-
imate adversarial patches: Evading human eyes and detec-
tion models in the physical world. In Proceedings of the
29th ACM International Conference on Multimedia, page
5307–5315, New York, NY, USA, 2021. Association for
Computing Machinery. 4



[26] Bilel Tarchoun, Anouar Ben Khalifa, Mohamed Ali
Mahjoub, Nael Abu-Ghazaleh, and Ihsen Alouani. Jedi:
Entropy-based localization and removal of adversarial
patches. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pages
4087–4095, 2023. 2, 3, 4, 5

[27] Simen Thys, Wiebe Van Ranst, and Toon Goedemé. Fooling
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