
S3R-GS: Streamlining the Pipeline for Large-Scale Street Scene Reconstruction

Supplementary Material

In this appendix, we provide additional ablation studies,
more comparative experiments, and further details of our
S3R-GS. Additionally, we provide more quantitative results
on nuScenes [5].

6. Additional Experiment Results

Effectiveness of Each Module on Reconstruction Speed.
To evaluate the effectiveness of each module in our method,
we compare the training speed and reconstruction quality.
Here, we study how each design in our S3R-GS influences
the reconstruction speed. Tab. 7 and Fig. 5 detail the per-
formance and reconstruction speed across different ablated
runs of S3R-GS on the KITTI 0009 scene. In particular,
by incorporating the instance-specific projection, the recon-
struction time decreases by 11.57 hours due to the mitiga-
tion of unnecessary transformations. As shown in Fig. 6,
the conventional reconstruction pipeline adopts a local-to-
global transformation strategy. During the forward pass, all
3D Gaussian primitives must be transformed from their lo-
cal coordinate systems into a shared global space. This op-
eration incurs a time complexity of O(4 × 4 ×M), where
M denotes the total number of 3D Gaussians. After trans-
formation, these Gaussians are projected onto the image
plane via a parallel CUDA C++ rasterization module. In the
backward pass, the loss gradients are first propagated to the
global coordinates of all 3D Gaussians, which is relatively
efficient due to explicit CUDA C++ implementation. How-
ever, the gradients must then be back-propagated from the
global space to each individual Gaussian in its ego local co-
ordinate frame by the autograd, again with a time complex-
ity of O(4× 4×M). This step introduces significant com-
putational overhead, particularly as the number of Gaus-
sians increases. In contrast, our instance-specific projec-
tion approach avoids the global transformation bottleneck.
During the forward pass, we only compute the instance-
specific extrinsic transformation from each object’s local
space to the camera space. This reduces the complexity to
O(4 × 4 × 4 × k), where k is the number of object in-
stances and k ≪ M . More importantly, the primary source
of computational redundancy in the conventional pipeline
stems from the autograd operations during the backward
pass. Our method circumvents this by explicitly implement-
ing the backward projection within the CUDA C++ raster-
izer, significantly reducing the training cost. As a result,
incorporating instance-specific projection significantly re-
duces the reconstruction time. Next, we assign a temporal
visibility attribute to each Gaussian to reduce excessive 3D
Gaussian projection; the reconstruction time further reduces

Instance-specific proj. Temporal visibility Adaptive LOD Rec. Time ↓ ↑
✗ ✗ ✗ 15.69h
✓ ✗ ✗ 4.12h
✓ ✓ ✗ 3.93h
✓ ✓ ✓ 3.02h

Table 7. Ablation Study on the Modules of the Reconstruction
Pipeline. Each component of our streamlined pipeline contributes
to its overall effectiveness.

by 0.19 hours. Since the KITTI dataset primarily consists
of single-view reconstructions, the viewpoint overlap is rel-
atively high. As a result, the improvement of incorporating
temporal visibility in single-view scenes is relatively less.
Despite this, excluding temporal visibility can easily lead to
memory overflow during training on large-scale scenes, un-
derscoring its necessity. Lastly, incorporating the adaptive
LOD strategy reduces reconstruction times by 0.91 hours.

Quantitative Evaluation under Ego-Vehicle Lane
Change. We conduct a focused comparison among our
proposed S3R-GS, NeuRAD [42], and StreetGaussian [53],
following the evaluation metric of NeuRAD. As shown in
Table 8, our method consistently outperforms both base-
lines across various ego-vehicle pose movements, including
lateral lane shifts and vertical viewpoint deviations.

Visualization of the Influence of BEV-Semantic Initial-
ization Augmentation. As illustrated in Fig. 7, after sup-
plementing the initial points of buildings using the BEV-
semantic initialization augmentation (left), the high-rise de-

Figure 5. Comparison of Reconstruction Times per iteration.
In large-scale scene reconstruction, our method maintains a stable
per-iteration training time by incorporating instance-specific pro-
jection, temporal visibility, and adaptive LOD, preventing over-
head from increasing as the number of Gaussians grows.

��,1
��,2
. . .

��,�

Local-to-global transformation

�� =

��,1
��,2
. . .

��,�

×

��2�,1
��2�,2

. . .
��2�,�

Time cost: 4 × 4 × �

3D-2D Projection

�� = ��2���

Time cost: low

Cuda C++ Implementation.
Parallel run in Rasterization.

퐿���

푑퐿
푑��

=
푑퐿

푑��
��2�

Time cost: low

푑퐿
푑��

=
푑퐿

푑��
��2�

Time cost: 4 × 4 × �

Autograd

Forward

Backward

Preview works

��,1
��,2
. . .

��,�

Instance-Specific Matrix

Time cost: 4 × 4 × 4 × �

Instance-Specific Proj.

��,� = ��2�,���,�

Time cost: low

Cuda C++ Implementation.
Parallel run in Rasterization.

퐿���

푑퐿
푑��,�

=
푑퐿

푑��,�
��2�,�

Time cost: lowTime cost: 푁���

Autograd

Forward

Backward

Instance-Specific Projection

��2�,1
��2�,2

. . .
��2�,�

= ��2� ×

��2�,1
��2�,2

. . .
��2�,�

푑퐿
푑��,�

=
푑퐿

푑��,�

Time cost comparision: backward time > forward time
 4x4xM forward time + 4x4xM backward time > 4x4x4xK forward time

�: number of objects; ��: number of 3D Gaussians for object �, total � = �=1
� ��;

��2�,� ∈ ℝ4×4: object-to-world transform; ��2� ∈ ℝ4×4: world-to-camera transform;

Cuda C++ Implementation.
Parallel run in Rasterization.

Cuda C++ Implementation.
Parallel run in Rasterization.

Figure 6. Time Complexity Comparison between the local-to-global transformation used in conventional reconstruction pipelines and
our instance-specific projection approach.

KITTI [75%] KITTI 0009 [75%]
FID ↓ Lane 0m Lane 2m Lane 3m Vert. 1m Lane 0m Lane 2m Lane 3m Vert. 1m

StreetGS 79.54 246.17 285.39 108.53 80.62 445.75 424.49 92.02
NeuRAD 34.14 161.09 193.21 196.56 95.16 324.87 339.08 147.91
S3R-GS 9.07 70.42 96.78 106.97 45.42 46.64 49.09 58.57

Table 8. FID Scores when Shifting Pose of Ego Vehicle. Sup-
plementing points in tall structure regions contributes to improved
reconstruction quality.

tails of the buildings can be reconstructed more quickly
(middle). In contrast, the setting without augmentation re-
sults in missing details in the upper parts of the buildings
(right). As a result, the application of the BEV-semantic ini-
tialization augmentation method to supplement points in tall
structure regions enhances the overall reconstruction qual-
ity. We also qualitatively compare the BEV-semantic ini-
tialization augmentation method (BEV-aug) and SfM ini-
tialization augmentation method (SfM-aug). As shown in
Fig. 8, the BEV-aug initialization is capable of accurately
initializing tall structures—such as buildings—that are of-
ten sparsely represented in LiDAR point clouds. In contrast,
the SfM-aug initialization tends to produce inaccurate re-
sults in these regions, primarily due to misalignment and ge-
ometric inconsistencies between the point clouds estimated
by Structure-from-Motion (SfM) and those acquired from
LiDAR sensors. This misregistration leads to significant er-
rors in the initialization of scenes.

Qualitative Comparison with Different Decomposition
Methods. Fig. 9 shows the qualitative reconstruction re-
sults with different decomposition methods. Compared
to 3D bounding boxes decomposition (bottom), our 2D
decomposed approach effectively models the appearance
of vehicles and accurately learns their positions (middle),
achieving competitive results to precise 3D bounding boxes.

Algorithm 1 BEV-Semantic Initialization Augmentation

1: Input: original points P, cam intrs, cam extrs, im-
age paths, image width w, image height h

2: aug points list←[]
3: aug labels← [′building′,′ house′,′ tree′]
4: masks← SegmentModel(image paths, aug labels)
5: for each camera (i, intrinsics K, extrinsics W) pair do
6: points uv, visble mask←ProjectToImage(P,K,W)
7: mask← masks[i]
8: idxs← mask[points uv]
9: bev coords← P[visible mask][idxs, :2]

10: grid size← 0.5
11: bev quats← floor(bev coords / grid size)
12: z coords← P[visible mask][idxs, 2]
13: grid dict← {lambda:’max z’”:,’avg xy’:,’count’:}
14: grid dict.record(bev quats, z coords)
15: z interval← 0.2
16: max h← 40
17: dense thresh← 5
18: supple points SP← []
19: for each valid grid cell in grid dict do
20: if grid cell[’count’] > dense thresh then
21: max z← grid cell[’max z’]
22: z vals← Range(max z, max h, z interval)
23: x, y← grid cell[’avg xy’]
24: Add (x,y,z vals) to supple points SP
25: end if
26: end for
27: SP uv, SP vis mask←ProjectToImage(SP,K,W)
28: Add SP[SP vis mask] to aug points
29: end for
30: Return the augmentation points aug points

7. The Details of S3R-GS
In this section, we provide a detailed description of each
part of our method.

7.1. BEV-Semantic Initialization Augmentation
For the LiDAR points captured at each time step t, we apply
the BEV-semantic initialization augmentation, as described
in Algorithm 1, to supplement the point cloud. After per-
forming this augmentation across all frames, we employ
a voxel grid downsampling method to remove redundant
points.

7.2. Neural field architectures and implementations
NeuralODE model. To maximize efficiency, we imple-
ment our NeuralODE model with simple multilayer percep-
trons (MLPs) as detailed in Tab. 9. The NeuralODE models
are employed to learn the velocity of objects. To enable the
network to accommodate objects with varying speeds and
trajectories, we introduce an instance embedding, where
the embedding size corresponds to the number of objects.
The input to our model consists of the timestamp t and the
instance embedding. Initially, the timestamp t is encoded
using sinusoidal encoding into a 4-dimensional representa-
tion. This encoded temporal representation is then concate-
nated with the instance embedding and passed through an
MLP. Specifically, we utilize a 4-layer MLP with a hidden
dimension of 64. Furthermore, we leverage the torchdif-
feq.odeint library, which provides an efficient and compu-
tationally optimized solver for ordinary differential equa-
tions (ODEs). This enables us to predict an object’s posi-
tion at a given timestamp based on its initial position and
the learned NeuralODE model, facilitating accurate trajec-
tory estimation.

Time encode Instance Embedding MLP
Method Input dim Output dim Embbed num Output dim Layers Hidden dim

Sinusoidal 1 4 object nums 16 4 64

Table 9. NeuralODE Model Architecture. We provide the de-
tailed parameter configurations of the NeuralODE Model which is
used to model object poses.

Neural fields. To predict the color of 3D Gaussians, we
take the view direction, 3D position, depth and a time-
dependent embedding as the input to neural fields. By in-
troducing the depth, the neural fields can learn the color of
Gaussians across different LODs. Following 4DGF [11],
for different types of inputs, we adopt different encoding
methods: We encode view directions using Spherical Har-
monics of degree 4, enabling the model to capture direc-
tional lighting effects efficiently; We employ a HashGrid
encoding to represent spatial positions, which helps miti-
gate excessive sparsity in the feature space; In contrast to
4DGF, we further introduce depth as an additional input to

the neural fields, and encode it using a Frequency encod-
ing with four frequency bands. For different types of Gaus-
sians, we adopt distinct neural architectures. We use a color
MLP and an opacity MLP to model the appearance of static
Gaussians; We employ a color MLP to predict the color of
dynamic Gaussians of rigid objects; We introduce both a
color MLP and a deformable MLP to capture the dynamic
appearance of dynamic Gaussians of non-rigid objects. We
adopt from 4DGF to handle transient objects and varying
illumination conditions. The detailed parameter configura-
tions are shown in Tab. 10.

7.3. Pipeline Optimization.
Following [11], to optimize the scene reconstruction, we
utilize the following loss function to optimize each training
iteration:

L = λcolorLcolor(Ir, Igt) + λssimLSSIM (Ir, Igt) + λdepLdep(Dr, Dgt),

(8)
where Ir denotes the rendered image, Igt denotes the
ground-truth image, Dr denotes the rendered depth of the
scene, and Dgt denotes the ground-truth depth map of im-
age, which is obtained by projecting the LiDAR point cap-
tured by sensor at the given training timestep onto the im-
age. Lcolor denotes the L1 norm, Lssim denotes the struc-
tural index measure [45], and Ldep denotes the L2 norm.

7.4. Implementation details
During training, we set Lcolor as 0.8, Lssim as 0.2, Ldep

as 0.05. We follow [11] and train the scenes using Adam
optimizer (β1 = 0.9, β2 = 0.999).In the adaptive Level of
Detail (LOD) strategy, the LOD threshold r is typically set
to 6 pixels. A larger r value accelerates the reconstruction
process but may also degrade performance. The maximum
culling probability pmax is generally set to 0.9, while the
maximum distance D is usually defined based on the ini-
tial scale of the scene prior to training. The offset values
[∆x,∆y,∆z] are commonly set to [0.5, 0.5, 0.2]. In our ex-
periments on Argoverse 2 [48] datasets, we train our model
on 8 V100 32GB GPUs for 125,000 steps. In our experi-
ments on large-scale scenes from KITTI [17] datasets, we
train our model on 1 V100 32GB GPUs for 100,000 steps.
In our experiments on the novel synthesis benchmark of
KITTI datasets, we train our model on 1 V100 32GPUs for
30,000 steps. In our experiments on nuScenes [5] datasets,
we train our model on 1 V100 32GB GPUs for 100,000
steps.

8. Additional Comparison Results
Comparison on Reconstruction Speed. To further eval-
uate the reconstruction speed and quality of our method
compared to the baseline, we conducted experiments
on challenging scenes selected from nuScenes datasets.

w prior
completion

w/o prior
completion

Initial 3D Gaussian distribution Intermediate reconstruction resultsPerformance comparison

Figure 7. Influence of Initial 3D Gaussian Prior Distribution. Incorporating the BEV-semantic initialization augmentation to complete
the initial 3D Gaussians is crucial for improving reconstruction quality.

 Ground Truth BEV-aug Initialization (Ours) SFM-aug Initialization

Figure 8. Visualization Results of BEV-aug Initialization and SfM-aug Initialization. The BEV-aug initialization approach provides
reliable initialization for tall structures that are inadequately captured by LiDAR sensors. In contrast, the SfM-aug initialization method
often suffers from inaccurate initialization due to misalignment between the SfM-estimated point clouds and the LiDAR data.

Specifically, we chose two difficult scenes from the
nuScenes dataset: scene 1 and scene 63. We used all frames
and six camera views from each selected scene. We com-
pared our method with StreetGaussian [53]. As shown in
Fig. 10, our method demonstrates significant advantages in
both reconstruction speed and quality. On the two nuScenes
scenes, our method achieved better reconstruction quality
while using only 25% of the time. This demonstrates that
our method not only achieves faster reconstruction but also
maintains high-quality results, particularly in large-scale
and complex scenes.

Additional Qualitative Comparison. We also provide
additional qualitative comparison results. As shown in
Fig. 11, the qualitative results on the nuScenes dataset high-
light the remarkable reconstruction speed and quality of our
method. For 10,000 rendering iterations, our method re-
quired only 428 seconds, compared to 1,999 seconds for
StreetGaussian [53]. Furthermore, our method achieved a
PSNR of 26.84 in 428 seconds, which is competitive with
the PSNR of 26.98 achieved by StreetGaussian [53] after
10,485 seconds. When comparing reconstruction quality
for the same number of rendering iterations, our method not
only takes significantly less time but also delivers much bet-
ter reconstruction quality.

Fig. 12 further illustrates the reconstruction results of our

method compared to StreetGaussian [53]. Our approach
achieved superior performance in modeling objects, par-
ticularly for fast-moving objects. In addition, our method
demonstrated greater robustness. For example, as shown in
the bottom row of Fig. 12, StreetGaussian [53] relies heav-
ily on accurate 3D bounding boxes. If these 3D bounding
boxes fail to accurately detect vehicles, StreetGaussian [53]
will often fail to reconstruct. However, due to the challeng-
ing nature of the nuScenes scenes, our method occasionally
showed artifacts during the reconstruction process.

GT RGB

2D Box

3D Bbox

t"

t"

t"

t#

t#

t#

t$

t$

t$

t%

t%

t%

Figure 9. Qualitative Comparison with Different Decomposition Methods. Decomposing the object and static elements with 2D boxes
and modeling object motion trajectories with NeuralODE produce competitive results to precise 3D bounding boxes.

Model
Direction encode Depth encode Position encode Color MLP Opacity MLP Deform. MLP
method degree method n freqs. method size #levels max. res. #layers hidden size #layers hidden size #layers hidden size

NeurFstatic SHs 4 Frequency 4 HashGrid 219 16 2048 3 64 2 64 - -
NeurFdynamic,rigid SHs 4 Frequency 4 HashGrid 217 8 1024 2 64 - - - -

NeurFdynamic,non−rigid SHs 4 Frequency 4 HashGrid 217 8 1024 2 64 - - 2 64

Table 10. Neural Field Architectures. We provide the detailed parameter configurations of two neural fields for static Gaussians and
dynamic Gaussians, which are used to model background and object appearance.

(a) Comparison on the scene nuScenes 01 (b) Comparison on the scene nuScenes 63

Figure 10. Reconstruction speed comparison. We evaluated reconstruction speed and quality on scenes from nuScenes datasets, where
our method showed significant advantages. Specifically, our approach achieved higher reconstruction quality while requiring less recon-
struction time. Notably, in the figure, the PSNR of StreetGaussian [53] drops below 10 during certain iterations due to the reset of Gaussian
opacity.

PSNR: 26.84 Time: 428s PSNR: 23.96 Time: 1999s

PSNR: 27.76 Time: 1583s PSNR: 25.32 Time: 6155s

PSNR: 28.00 Time: 2892s PSNR: 26.98 Time: 10485s

S3R-GS (Ours) StreetGaussian

Iters
10000

Iters
30000

Iters
50000

Figure 11. Qualitative Comparison on the nuScenes Dataset. We compare the reconstruction quality and reconstruction time of our
proposed method against those of the primary competitor, StreetGaussian [53], on various scenes from the nuScenes dataset.

StreetGaussian S3R-GS (Ours)Ground Truth

Figure 12. Qualitative Comparison on the nuScenes Dataset. We present a qualitative comparison of our method against the primary
competitor, StreetGaussian [53], on the scenes from the nuScenes dataset.

	Introduction
	Related Work
	NeRF for Street Scene Reconstruction
	3DGS for Street Scene Reconstruction

	Method
	Preliminary
	Improvements in Scene Modeling Stage
	Streamlined Reconstruction Stage

	Experiment
	Experimental Setup
	Results and Comparisons
	Ablation Study

	Conclusion
	Additional Experiment Results
	The Details of S3R-GS
	BEV-Semantic Initialization Augmentation
	Neural field architectures and implementations
	Pipeline Optimization.
	Implementation details

	Additional Comparison Results

