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A. Appendix
A.1. Adversarial Test
Our adversarial experiments use two well-established tech-
niques: Fast Gradient Sign Method (FGSM) and Projected
Gradient Descent (PGD).

FGSM [3] is a single-step adversarial attack algorithm
designed to generate adversarial examples efficiently. It
computes the gradient of the loss function with respect to
the input data and adds a small perturbation in the direc-
tion of the gradient’s sign. The adversarial example 𝑥adv is
generated as:

𝑥adv = 𝑥 + 𝜖 · sign(∇𝑥𝐽 (𝑥, 𝑦)) (1)

where 𝑥 is the original input, 𝜖 controls the perturbation
magnitude, and 𝐽 (𝑥, 𝑦) is the loss function.

PGD [9] is an iterative variant of FGSM that generates ad-
versarial examples by repeatedly applying gradient updates.
Starting from an initial perturbed input, PGD iteratively re-
fines the perturbation while projecting the result back into a
𝐿∞-norm ball of radius 𝜖 . The update rule at each iteration
𝑡 is:

𝑥𝑡adv = Clip𝑥,𝜖

(
𝑥𝑡−1

adv + 𝛾 · sign(∇𝑥𝐽 (𝑥𝑡−1
adv , 𝑦)

)
(2)

where 𝛾 is the step size, and Clip𝑥,𝜖 (·) ensures the pertur-
bation remains within the allowed bounds.

A.2. Datasets
Our experimental evaluation includes five standard datasets,
consisting of three static ones (ImageNet-1K, CIFAR-10,
and CIFAR-100) and two event-based neuromorphic ones
(CIFAR10-DVS and N-Caltech101).

ImageNet-1K: ImageNet-1K [1], formally known as
the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) dataset, is one of the most influential benchmarks
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in computer vision research. It comprises over 1.28 million
training images across 1,000 classes, along with 50,000 val-
idation images and 100,000 test images.

CIFAR-10: CIFAR-10 [6] is a fundamental benchmark
dataset in computer vision research, comprising 60,000
color images of size 32 × 32 pixels, distributed across 10
mutually exclusive classes.

CIFAR-100: CIFAR-100 [6] builds upon the design prin-
ciples of CIFAR-10 while introducing a more challenging
classification task. It consists of 60,000 color images of size
32 × 32 pixels, categorized into 100 finer-grained classes.

CIFAR10-DVS: CIFAR10-DVS [8] represents a neuro-
morphic adaptation of the original CIFAR-10 dataset, specif-
ically designed for the evaluation of SNNs in event-based
vision tasks. There are 10,000 samples, whose spatial size
is 128 × 128.

N-Caltech101: N-Caltech101 [10] is a neuromorphic
adaptation of Caltech101, containing 101 classes and 8,709
samples with a spatial resolution of 180 × 240 pixels.

A.3. Energy Consumption Calculation of SNNs and
ANNs

The uniformity of convolution enables the subsequent batch
normalization (BN) and linear scaling transformations to
be seamlessly integrated into the convolutional layer as an
added bias during deployment [2, 5]. Consequently, when
estimating theoretical energy consumption, the impact of
BN layers can be disregarded. Before computing the theo-
retical energy consumption for SpiLiFormer, we first deter-
mine the number of Synaptic Operations (SOPs) of spikes.

SOP𝑖 = 𝑓𝑟 × 𝑇 × FLOPs𝑖 , (3)

where 𝑖 denotes the 𝑖-th layer module in SpiLiFormer, 𝑓𝑟
represents the firing rate of spike trains at the input of
the layer module, and 𝑇 refers to the simulation time step.
FLOPs𝑖 represents the number of floating-point operations
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in the 𝑖-th layer module, measured in terms of multiply-and-
accumulate (MAC) operations. SOP𝑖 refers to the count of
spike-based accumulate (AC) operations. We assume that
MAC and AC operations are executed on 45nm hardware
[4], where 𝐸MAC = 4.6𝑝𝐽 and 𝐸AC = 0.9𝑝𝐽 according to
previous studies [4, 7, 11, 12]. The theoretical energy con-
sumption of SpiLiFormer is computed as follows:

𝐸SpiLiFormer = 𝐸AC ×
(

𝑀∑︁
𝑖=2

SOP𝑖
Conv +

𝑁∑︁
𝑗=1

SOP 𝑗

FF-LiDiff Attn

+
𝑅∑︁
𝑝=1

SOP𝑝

FB-LiDiff Attn

)
+ 𝐸MAC × FLOPs1

Conv, (4)

where FLOPs1
Conv represents the floating-point operations

in the first convolutional layer, which processes the input
image in RGB format. Subsequently, the SOPs from 𝑀

convolutional layers, 𝑁 layers of FF-LiDiff attention, and
𝑅 layers of FB-LiDiff attention are summed and multiplied
by 𝐸AC. For ANNs, the theoretical energy consumption is
determined as follows:

𝐸ANN = 𝐸MAC × FLOPs. (5)

A.4. Selection of the Optimal 𝛼 Hyperparameter
We perform an ablation study on both static and dynamic
datasets to select the optimal value of the hyperparameter 𝛼,
as shown in Tab. 4. The results show that the model achieves
peak accuracy when 𝛼 = 0.5, while other values lead to
varying degrees of performance degradation. As a result,
we set 𝛼 to 0.5 by default in all subsequent experiments.

Datasets 𝛼 Value
0.3 0.4 0.5 0.6 0.7

CIFAR-10 96.35 96.40 96.63 96.36 96.16
CIFAR10-DVS 86.3 86.4 86.7 86.1 85.6

Table 4. Ablation Study of the 𝛼 hyperparameter

A.5. Evaluation of Inference Latency

Datasets Inference Time per Sample (ms)
w/o FB-LiDiff w/ FB-LiDiff

CIFAR-10 0.7657 0.9322 (+21.7%)
CIFAR-100 0.6965 0.8581 (+23.2%)

CIFAR10-DVS 9.9433 10.0657 (+1.2%)
N-Caltech101 18.4273 19.8113 (+7.5%)
ImageNet-1K 58.9901 66.3027 (+12.4%)

Table 5. Inference time per sample (ms) across datasets.

We conduct a comprehensive evaluation of the inference
latency introduced by FB-LiDiff due to its additional forward
pass. As shown in Tab. 5, FB-LiDiff increases inference
time by 1.2% to 23.2%, with over 20% overhead observed
on static CIFAR datasets.

A.6. Supplementary Tables and Figures



Dataset Methods Time Step Clean
FGSM PGD

Maximum Perturbation Iterations
0.05 0.1 0.2 0.3 5 10 30 50

CIFAR-10
QKFormer 4 96.18 68.33 65.67 59.51 53.33 33.94 25.56 17.96 16.8

SpiLiFormer(Ours) 4 96.63 68.9 66.05 59.98 54.46 35.43 25.7 18.61 17.13
(+0.45) (+0.57) (+0.38) (+0.47) (+1.13) (+1.49) (+0.14) (+0.65) (+0.33)

CIFAR-100
QKFormer 4 81.15 35.45 31.18 26.27 22.07 18.48 13.43 10.09 9.12

SpiLiFormer(Ours) 4 81.63 37.33 34.19 29.08 24.3 18.84 14.04 10.43 9.67
(+0.48) (+1.88) (+3.01) (+2.81) (+2.23) (+0.36) (+0.61) (+0.34) (+0.55)

CIFAR10-DVS
QKFormer 16 84.00 29.30 17.70 10.50 10.00 2.00 1.20 0.40 0.50

SpiLiFormer(Ours) 16 86.70 34.50 23.70 15.60 11.70 3.50 1.40 0.40 0.40
(+2.70) ( +5.20) (+6.00) (+5.10) (+1.70) (+1.50) (+0.20) 0.00 -0.10

ImageNet-1K
QKFormer 1 80.10 37.38 32.39 27.13 23.83 9.49 4.44 2.04 1.81

SpiLiFormer(Ours) 1 81.54 40.17 36.01 30.99 27.45 10.89 5.14 2.43 1.95
+(1.44) (+2.79) (+3.62) (+3.86) (+3.62) (+1.40) (+0.70) (+0.39) (+0.14)

Table 6. Adversarial robustness comparison between QKFormer and our model across four datasets, including CIFAR-10, CIFAR-100,
CIFAR10-DVS, and ImagetNet-1K. For PGD, the attack strength is set to 8/255, with a step size of 2/255 per iteration.
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Figure 4. Comparative visualization of attention heatmaps from ImageNet-1K, with corresponding ground truth labels and model predictions
annotated below each sample.
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Figure 5. Representative samples from ImageNet-1K, demonstrating original images and their corresponding attention heatmaps across
different models.



Brightness Contrast Defocus

Blur

Elastic

Transform

Fog Frost Gaussian

Blur

Gaussian

Blur

Glass

Blur

Impulse

Blur

Jpeg

Compression

Motion

Blur

Pixelate

Saturate Shot

Noise

Snow Spatter Speckle

Noise

Zoom

Blur

Figure 6. Visualization of CIFAR-10C. For all 19 types of corruptions, each column displays the following cases: the first image is
the original corrupted image; the second and third images show the attention heatmaps of Spike-Driven Transformer and QKFormer,
respectively; the last image visualizes the attention of SpiLiFormer.
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Figure 7. Visualization of ImageNet-1K-C for all types of corruptions. The layout and image order follow the same structure as illustrated
in Fig. 6.
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