ViL.La: Video Reasoning Segmentation with Large Language Model

Supplementary Material

This supplementary material provides more details about
the proposed VilLLa, and our proposed benchmark, Vide-
oReasonSeg. The first part includes discussions about the
design of ViLLa and its comparison with previous methods,
followed by the implementation details. Then, we provide
extra ablation experiments. What’s more, we include the
data generation pipeline of our VideoReasonSeg dataset, and
further data cases demonstrating the variety of our data sam-
ple. Finally, we include failure case analysis. The content is
organized as follows:

* Discussions of ViLLa’s differences with previous methods.
* The implementation details of ViLLa.
* More ablation study experiment of ViLLa.

* The data details and the data generation pipeline of our
proposed VideoReasonSeg dataset.

* Failure case analysis of ViLLa.

A. Discussions

ViLLa is a holistically designed framework for Video Rea-
soning Segmentation (VRS), a burgeoning task demanding
spatiotemporal tracking, segmentation, and dynamic reason-
ing in complex, evolving scenes. While prior works (e.g.,
LISA, PixelLM, Mask2Former) focus on reasoning static
images or tracking through short clips, their architectures
inherently mismatch VRS needs for two major reasons: 1)
Temporal Reasoning Gap: Static MLLMs lack mecha-
nisms to model motion, causality, or long-term dependencies
in videos, while VOS/VIS methods lacks high-level reason-
ing beyond tracking. 2) Integration Challenges: Simply
grafting spatial reasoning modules (e.g., ViLLa') onto tem-
poral trackers incurs additional computational costs and sub-
optimal performance. ViLLa bridges these barriers via three
novel, task-specific components: i) Key Segment Extractor:
Identifies critical temporal segments to reduce redundancy.
ii) Context Synthesizer: Fuses and condenses long-term
spatial-semantic reasoning information with dynamic scene
evolution. iii) Hierarchical Temporal Synchronizer: Ensures
consistency across long-term dependencies and modeling of
complex scenes via multi-scale aggregation with multi-level
segmentation tokens. As shown in Tab. 1, ViLLa achieves
+3.5/2.4 gains over ViLLa' (adapted from LISA with designs
from PixelLM, Mask2Former, and curated data), proving
that adaptive integration of spatiotemporal reasoning mod-
ules—not direct reuse of static models—is essential and
effective for VRS. In short, our VRS-oriented design novelly
addresses understudied challenges in VRS.

Table 1. Comparison of direct adaptation of former approaches.

VideoReasonSeg MeViS
Method ‘ T&F Accuracy ‘ J&F J F
ViLLa® 51.9 44.0 47.0 43.9 50.1
ViLLa 554 49.9 494 46.5 523

Table 2. Training hyperparameters for ViL.La.

Config ‘ Value

input resolution 224

max text length 512
optimizer AdamW
optimizer momentum B1, B2 =0.9,0.999
weight decay 0.02
learning rate schedule cosine decay
learning rate 2e-5

batch size 32
warmup iters 10

B. Implementation Details

Training Details. In the first part, we present the detailed
training configuration in our Tab. 2. As for the \;,; and
Amask» they are set to 1.0, and Ag;c. is 0.5 while A, is 2.0.

C. Additional Ablation Experiments

Sampling Strategy. In the key segment extractor, we take
the average from the top-K responses to obtain the starting
and ending frames of the key segments, where we denote
as Viey, comprising Tj., frames. Based on the key seg-
ments, we also sample T’y using an adaptive global sam-
pling strategy. ‘Global’ indicates sampling 7. ; frames from
the whole video apart from the key segments we extract,
and ‘neighbor’ denotes sampling frames from the neigh-
boring frames (both precedent and antecedent) of the key
segments. Our ‘adaptive’ sampling strategy, on the other
hand, combines both ‘global’ and ‘local’ sampling strategies,
which samples 7.y /3 from the whole video, and 2/3T
from the neighboring frames. As shown in Tab. 3, adap-
tive sampling slightly outperforms both global and neighbor
sampling strategies. As the number 7. increases, the per-
formance gradually improves.

Aggregation Strategy. Tab. 4 shows the results of differ-
ent aggregation strategies in the segment synchronization
decoder. We compare our aggregation between video-level
segmentation embeddings with the feature fusion adopted in
PixelLM [5]. As shown in the table, our strategy improves
the performance on referring VOS dataset, demonstrating
the effectiveness of the video-frame aggregation strategy.
Video Instance Segmentation. Tab. 5 presents the results
on the video instance segmentation datasets. YouTube-VIS
2019 [8], contains 2.9k videos. The dataset was updated to



Table 3. Ablation study on different sampling strategies.

ReasonVideoSe,
Strategy ‘ Tref ‘ T&F Acgcuracy
0 54.0 47.8
Global 6 54.3 483
12 54.5 48.7
0 54.0 478
Neighbor 6 54.4 48.5
12 54.7 49.2
0 54.0 47.8
Adaptive 6 54.8 49.0
12 554 49.9

Table 4. Ablation study on aggregation strategies.

Ref-YouTube-VOS Ref-DAVIS17

Strategy T&F 7 F T&F 7 F

Feature Fusion 65.9 64.1 68.5 63.2 60.5 66.1

Embedding Similarity 66.5 64.6  68.6 64.4 61.2 67.7

Table 5. Comparison on multiple VIS datasets.
YTVIS-19 YTVIS-21 OVIS

Method ‘ AP ‘ AP ‘ AP
SeqFormer [6] 59.3 51.8 -
Mask2Former [1] 61.6 55.3 24.1
VITA [2] 63.0 57.5 27.7
IDOL [7] 64.3 56.1 42.6
ViLLa 67.6 59.9 46.5

YouTube-VIS 2021 with longer videos. OVIS dataset is an-
other resource for video instance segmentation, particularly
focusing on scenarios with severe occlusions between ob-
jects [4]. Tt consists of 25 object categories and 607 training
videos. Our ViLLa surpasses previous SOTA VIS methods
by 3.3, 3.8, and 3.9 points, respectively. The results prove
that our model is excelling at modeling temporal relations
and segmenting high-quality tracklets.

D. VideoReasonSeg Details

In order to generate multiple-choice QA, we automatically
convert the video annotations into this format via LLMs.
Specifically, we first use ChatGPT [3] to generate a ques-
tion for each video. For most questions, we construct the
option candidates directly from the ground truth annotations.
For example, video segmentation tasks contain masks and
instance categories of each video. Then the candidate option
for multiple-choices would be the correct category, wrong
category, and a not-sure choice. Ultimately, we produce 2
pairs for each of the video. To strengthen the evaluation’s
robustness, for each question we randomly sample 3 to 5
answer options from the available candidates and shuffle the
order of the options. Additionally, to prevent the common
issue of answer leakage where longer options tend to be
correct, we further use a large language model to ensure
that all the answer options for a question are of similar and
reasonable lengths.

As for the question and answer pair, we use GPT-4V to
construct our dataset. We utilize videos with pre-existing
video mask annotations. The video frames, the category

names contained in the video, and their related mask anno-
tation are contained in the prompts fed to the GPT-4V. An
example of the prompts is shown in Fig. 1. Using carefully
crafted prompts, GPT-4V autonomously selects instances to
construct question-answer pairs relevant to the video. As
illustrated in Fig. 2, we demonstrate two types of questions,
both question and multiple choice, from a given video. In
this example, we show that our data tests the capability of
models of reasoning based on common world-knowledge,
and relate ‘vehicle carrying passengers’ to the white bus on
the roadside. In addition, the multiple choice expects the
model to distinguish the type of vehicle from other plausible
answers, such as ‘taxi’ and ‘bike’. All together these ques-
tions are tests of the reasoning capacities of models on both
pixel-level and video-level.

During the generation process, we compared GPT-4V
with Qwen-2VL and other contemporary models, while other
models performed unsatisfactorily in generating well-aligned
QAs with long instructions. 2) Prompting and refinement
strategy. To ensure the instruction-mask alignment, we use
GPT-4V to generate data in multiple steps: GPT-4V was
explicitly primed with a structured task schema. We also
add constraints, such as “Avoid subjective language”. After
generating instructions, GPT-4V was prompted to score its
output on a 1-5 scale, and samples with scores lower than 4
were automatically discarded. Instructions containing vague
terms were filtered via keyword rules. 3) Human evaluation.
After this autonomous process, we invite experts to sample
and filter low-quality QA pairs (20%).

Although GPT-4V can efficiently understand the content
of the video frame, there are still failure cases in the gener-
ated data. One major problem is that questions can be too
objective and hard to evaluate. For example, the question
“How would you rate the overall difficulty and impressive-
ness of the skateboarding you observed?” is very objective,
and the answers can vary for different people. This requires
further prompts and filtering during data generation process.

Video visualizations of additional data of the VideoRea-
sonSeg are further presented in Fig. 3, which shows varied
cases that include: a) discrimination from multiple instances;
b) multiple instances with fast movement; c) open-world
knowledge reasoning.

E. Failure Case Analysis

Even though our ViLLa shows impressive results in video
reasoning segmentation, there is still room for improvement.
As shown in Fig. 4, ViLLa incorrectly segments the by-
stander who is observing the two-person talking. We hypoth-
esize that this error arises from the inability of the MLLM to
temporally localize the “talking” action, which occurs exclu-
sively in the final three frames (there is even an occlusion in
the last frame). Consequently, ViLLa erroneously associates
the individual with the motor-riding man in the initial frames
and persistently tracks this subject throughout the video.



Prompt: Suppose you need to ask a machine agent a question
about a video. The height of each frame is 480, width is 640. The
instances in the video are listed. Their category name,
corresponding mask, corresponding frame are listed:

Catl, [xxx,xxx,...], [05,10,15,...]

Cat2, [xxx,xxx,...], [15,20,25,...]

The question should involve at least one of these objects and that
the question should require the agent video reasoning to respond.
The rules you need to follow are:

1.Utilize the object list: Make sure your question involves at least
two objects based on the provided object list. This will guide the
machine agent to compare and reason about the objects.

2.Utilize image size information: Understanding the height and Output:
width of the image can help you better describe the relative o> Question: What'’s happening between these two animal?
positions, sizes, and orientations of the objects. Combine the Answer: Two cats are engaged in a playful interaction. The white cat <SEG1> is

image size with the object coordinates... chasing the gray cat <SEG2>.

Figure 1. GPT-4V data generation pipeline. The right part shows an example of how reasoning segmentation data and multiple choices are
generated. The input prompt includes certain rules and the position as well as time localizations to instruct GPT-4V into generating more
effective data samples.

Question: <VIDEO> What mode of transportation is depicted in the video that is commonly used for carrying
passengers on roads?
Answer: The bus <SEG>.

Question: <VIDEO> What vehicle is shown parked on the roadside in the rural setting depicted in the video?
Choices: A) A taxi cab B) A bike C) A long-distance bus D) A delivery truck

Figure 2. GPT-4V data generation samples. The part shows further samples of the generated questions and the multiple choices. The two
types of questions can help us better evaluate the model’s performance in video reasoning at both pixel-level and video-level.
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Question: <VIDEO> Which water pistol will absorb water in the end of the video?
A AR A T I '

&

Question: <VIDEO> Which is the spherical object made up of leather in the shape of regular pentagons and regular
hexagons?

(c) !
' Answer: <SEG>.

Question: <VIDEO> Which is the person talking to the man riding on the motor?
Answer: < >,

Figure 4. Failure case. ViLLa incorrectly segments the bystander who is observing the two-person talking.
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