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1. Detailed Implementation
1.1. nuScenes Benchmark
1.1.1. Detailed Metrics
Following prior methods, nuScenes evaluates trajectories
using L2 Error and Collision Rate. The L2 Error mea-
sures the distance between the planned trajectory and the
human-driven trajectory. The Collision Rate measures how
frequently the planned trajectory collides with other agents
on the road.

1.1.2. Data Processing Pipeline
In nuScenes experiments, the original 6-surround-view im-
ages have a resolution of 900×1600 . They are first resized
to 360×640, then padded to a final input size of 384×640,
yielding Iimg

t ∈ R6×3×384×640. After processing through
the image backbone network, the image features are down-
sampled to a spatial resolution of 12×20, producing a fea-
ture Ift ∈ R6×240×256, which serves as the input for subse-
quent network layers.

1.2. NAVSIM Benchmark
1.2.1. Detailed Metrics
NAVSIM evaluates trajectories using PDMS, with the spe-
cific evaluation formula given as:

PDMS = NC×DAC× (5× EP + 5× TTC + 2× Comf.)
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(1)
NC and DAC serve as multiplicative factors for other evalu-
ation metrics. NC assesses the likelihood of the ego vehicle
colliding with other agents, while DAC evaluates whether
the predicted future trajectory remains within the drivable
region. Other metrics are aggregated through a weighted
summation. EP quantifies the ego vehicle’s anticipated driv-
ing distance along the designated route within the next 4
seconds. TTC measures the safety of the current state by
estimating the time required for a potential collision with
other agents if the vehicle maintains its present motion state.
Comf. assesses driving smoothness by analyzing accelera-
tion, heading changes, and other dynamic factors.

1.2.2. Data Processing Pipeline
In the NAVSIM experiments, the input features consist of
ego status et and image information Ifinalt ∈ R3×256×1024.
et is a vector of [ct, vt, at], where vt and at denote the ego
vehicle’s velocity and acceleration at time t, and ct is a one-
hot encoded vector indicating the control command (left

Table 1. Ablation study of timestamp interval

Timestamp interval n L2 (m) ↓ Collsion (%) ↓
1 0.55 0.35
3 0.50 0.16
6 0.52 0.24

turn, right turn, or straight). The image input, originally
of size I raw

t ∈ R3×1080×1920, undergoes a structured pre-
processing pipeline. The front view is vertically cropped,
resulting in Ift ∈ R3×1024×1920, while the left and right
views are cropped along both height and width dimensions,
yielding I lt, I

r
t ∈ R3×1024×1088. The processed views are

then concatenated along the width dimension, forming

Iconcat
t = Concat(I lt, I

f
t , I

r
t ) (2)

Finally, the concatenated image is resized to

Ifinal
t = Resize(Iconcat

t , (3, 256, 1024)) (3)

2. Additional Experimental Results
2.1. Ablation of Timestamp Interval
In this section, we investigate the impact of varying the
timestamp interval n of the input data on model perfor-
mance. Table 1 shows the quantitative results of our ab-
lation experiments.

As shown in Table 1, the model achieves optimal perfor-
mance when the timestamp interval is set to 3, obtaining the
lowest L2 error of 0.50 meters and the lowest collision rate
of 0.16%. Increasing the interval to 6 results in a slight per-
formance degradation, with the L2 error rising to 0.52 me-
ters and the collision rate increasing to 0.24%. Conversely,
using a very short interval (n = 1) also negatively affects
performance, causing an increase in both L2 error (0.55 me-
ters) and collision rate (0.35%).

Experimental results show that the best performance is
achieved when n = 3. We argue that when n is too small,
the scene information lacks significant variation, preventing
the model from capturing sufficient contextual temporal in-
formation. On the other hand, when the timestamp span is
too large, the model’s assessment of future scenes becomes
less accurate.

2.2. Ablation of Reconstruction Losses
Table 2 presents an ablation study evaluating the influ-
ence of different reconstruction losses, specifically Mean



(a) Turn Left

(b) Turn Right

(c) Go Straight

Figure 1. Red trajectory is ground-truth, while orange and blue trajectories are generated by World4Drive and LAW [? ].

Squared Error (MSE), Kullback-Leibler (KL) divergence,
and Cosine similarity loss. In general, the choice of recon-
struction loss has a relatively minor impact on the model’s

overall performance. Thus, We choose the MSE loss as the
reconstruction loss.



Figure 2. Red trajectory is ground-truth. Green trajectories and blue trajectory are generated by World4Drive, while blue one is the best
one selected by world model.

Table 2. Ablation study of reconstruction losses

ID Mse KL Cosine L2(m)↓ Collsion(%) ↓

1 ✓ 0.50 0.16
2 ✓ 0.50 0.17
3 ✓ 0.52 0.20
4 ✓ ✓ 0.51 0.18
5 ✓ ✓ 0.51 0.19
6 ✓ ✓ ✓ 0.50 0.16

Table 3. Ablation study of Metric Depth Models

Metric Depth Model L2 (m) ↓ Collsion (%) ↓
Metirc3D v1 Convtiny 0.50 0.19

Metirc3D v2 Small 0.51 0.20
Metirc3D v2 Giant 0.50 0.16

2.3. Ablation of Metric Depth Models

In this section, we explore how different metric depth mod-
els affect the model’s performance. Table 3 summarizes our
findings. We observe that all tested depth models (Convtiny,
Small, Giant) achieve comparable performance. Specifi-
cally, both the Convtiny and Giant models achieve the low-
est L2 error of 0.50 meters, while the giant model slightly
outperforms in collision rate (0.16%) compared to Convtiny
(0.19%) and small (0.20%). However, the performance dif-
ferences among these depth models are minimal. This in-
dicates that while the inclusion of metric depth informa-
tion significantly improves overall model performance, the
model’s complexity or size is not the primary determinant
of accuracy or collision avoidance capabilities. Thus, even
simpler depth models can provide sufficient spatial context
to achieve similar trajectory prediction results. Given that
the performance of different depth models is comparable,
in practical deployment, an appropriate depth model can be
selected based on specific computational requirements.

3. Additional Qulitative Results
3.1. More Visulization
We provide high-quality visualizations on NASIM bench-
marks, as shown in Figure 1. We present a comparison
between LAW and World4Drive in scenarios involving left
turns, right turns, and straight driving. Compared to LAW,
World4Drive demonstrates a stronger alignment with the
ground-truth trajectory. Additionally, World4Drive is better
able to capture scene information, particularly in determin-
ing whether the driving trajectory lies within the drivable
area.

3.2. Failure Case
We present failure cases of World4Drive on NuScenes in
Figure 2, showing low-quality trajectories under incorrect
driving commands. We found misannotations in NuScenes,
such as a left-turn scene labeled as go-straight in Figure 2,
making it difficult to generate accurate trajectory.
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