
iManip: Skill-Incremental Learning for Robotic Manipulation

Supplementary Material

1. Experiments on key hyperparameters
We conducte experiments in RLbench on four key hyperpa-
rameter: the number of replays per keyframe, the length of
each action prompt, the hyperparameter of distillation loss
factor λdis, and the dimension of the appended PerceiverIO
weight matrix dnew, using the B5-1N1 and B5-5N1 setups.
Exploring the amount of replays per keyframe. For each
new manipulation skill, 20 training trajectories are used for
training. Specifically, as shown in Figure 1 (a), we vary
the replay size from 1 to 5 per keyframe based on the tem-
poral replay strategy. The results demonstrate that increas-
ing the number of replays leads to improved model perfor-
mance. For memory efficiency, We store 2 samples per old
keyframe for replay.
Exploring the length of each action prompt. During the
training in the new incremental step, there are new skill-
specific action prompts assigned to learn action primitives.
Specifically, as shown in Figure 1 (b), we conduct exper-
iments with action prompt lengths varying from 4 to 32.
The results show that extending the length of skill-specific
action prompts enhances model performance. For better
memory efficiency, the action prompt length is set to 16.
Exploring the distillation loss factor λdis. In our iManip,
we propose to use a distillation loss with a factor λdis to
transfer the knowledge from the old model to the agent. We
conduct ablation experiments with different values of λdis

to investigate the impact of the distillation loss on model
performance, as shown in Figure 1 (c). Results indicate
that distillation from the old model contributes to improving
agent performance. However, a larger weight of λdis causes
the model to focus too much on old skills, negatively affect-
ing overall performance. We set this parameter to 0.001 to
achieve optimal performance.
Exploring the impact of expended PerceiverIO. We pro-
pose extending the weights of the PerceiverIO to adapt to
learn new action primitives. As shown in Figure 1 (d),
we perform ablation experiments on the dimension of the
appended PerceiverIO weight matrix dnew. The results in-
dicate that the best performance is achieved when dnew is
set to 8, and larger values hinder overall performance. This
is because more new parameters for new skills training can
interfere with the retention of old knowledge, leading to for-
getting.

2. More exploratory experiments
The effect of skill learning order. Long-horizon skills are
more challenging for robotic manipulation [1]. Based on the
number of keyframes, we organized robotic skills into three

Order Base Step 1 Step 2
B S1 B S1 S2 Average

S-M-L 72 42 44 42 36 10 29.3
S-L-M 72 44 10 40 8 44 30.7
M-S-L 48 42 66 34 42 10 28.7
M-L-S 48 38 8 32 4 58 31.3
L-S-M 10 6 60 4 46 38 29.3
L-M-S 10 8 48 4 34 52 30.0

Table 1. Average success rate of skills with varying levels (Short,
Medium, and Long) on different continuous learning orders. The
new skills learned in the base step, 1st step, and 2nd step are
termed B,S1, and S2 respectively.

progressively more challenging levels, i.e. short, medium,
and long. Skills with fewer than five keyframes are consid-
ered short-horizon, those with 5 to 10 keyframes are clas-
sified as medium, and skills with more than 10 keyframes
are regarded as long-horizon. We conducted experiments
on the learning sequence of skills with varying levels in the
B2-2N2 setting, as shown in Table 1. It is evident that, re-
gardless of the skill learning sequence, our method main-
tains a balanced average accuracy after completing all skills
in the final stage. This highlights the robustness of our ap-
proach, which can effectively adapt to learn different new
skills. Furthermore, the results reveal that, compared to
short-horizon skills, longer-horizon skills are more effective
in acquiring general knowledge, thereby mitigating forget-
ting.

Method B5-1N5 B3-2N3

PerAct [5]
None 15.6 8.4
+TIB 20.4 22.6
+Ours 25.6 30.7

GNFactor [6]
None 20.4 15.6
+TIB 27.4 29.3
+Ours 33.6 36.9

3DDA [4]
None 42.4 31.6
+TIB 67.6 68.4
+Ours 72.8 76.4

Table 2. The results of adapting our iManip to different robotic
manipulation pipelines.

Plug and play. Our skill-incremental policy can also be
seamlessly integrated into other robotic multi-task learning
pipelines. We apply our method to three robotic multi-task
learning frameworks including Peract[5], GNFactor[6], and
3DDA[4]. we compare our method with pipelines that ei-

54.7
56.7 52.7

50.0

33.2
36.0

31.2 30.0

20

25

30

35

40

45

50

55

60

0.001 0.01 0.1 1

Valuses of 𝜆𝑑𝑖𝑠

Su
cc

es
s

R
at

e
(%

)

56.0 56.7
53.3 52.0

35.6 36.0
33.2

31.6

20

25

30

35

40

45

50

55

60

4 8 16 32

Su
cc

es
s

R
at

e
(%

)

Values of 𝑑𝑛𝑒𝑤

ours

oursours

ours

B5-1N1

B5-5N1

B5-1N1

B5-5N1

41.3

56.7 57.3 58.0 58.7

30.4

36.0
37.6 38.0 38.4

30

35

40

45

50

55

60

65

1 2 3 4 5

B5-1N1

B5-5N1

ours

ours

52.7
54.0

56.7 57.3

31.6
33.6

36.0 36.4

30

35

40

45

50

55

60

4 8 16 32

ours

ours

B5-1N1

B5-5N1

(a) (b) (c) (d)

Length of each action promptNumber of Replays for each keyframe

Su
cc

es
s

R
at

e
(%

)

Su
cc

es
s

R
at

e
(%

)

Figure 1. Experiments results of four key hyperparameters.

Manipulation skill Type Variations Keyframes Instruction Template
close jar color 20 6.0 “close the jar”

open drawer placement 3 3.0 “open the drawer”
sweep to dustpan size 2 4.6 “sweep dirt to the dustpan”

meat off grill category 2 5.0 “take the off the grill”
turn tap placement 2 2.0 “turn tap”

slide block color 4 4.7 “slide the block to target”
put in drawer placement 3 12.0 “put the item in the drawer”

drag stick color 20 6.0 “use the stick to drag the cube onto the target”
push buttons color 50 3.8 “push the button, [then the button]”
stack blocks color, count 60 14.6 “stack blocks”

Table 3. Task Information Table

ther did not include incremental methods or used traditional
incremental learning methods. Specifically, for storing old
replay data, all the aforementioned pipelines can utilize our
temporal replay strategy to sample informative, temporally
balanced samples from previous manipulation skills. Fur-
thermore, we can modify the transformer with our exten-
sible self-attention layer by appending action prompts and
incorporating a minimal number of trainable parameters
to adapt to different action primitives. Notably, following
the original setup of each paper, we use 20 demonstrations
per manipulation skill for PerAct and GNFactor, and 100
demonstrations for 3DDA. As shown in Table 2, in each
pipeline, our method achieves the highest task success rates.
This demonstrates the excellent scalability of our incremen-
tal strategy.

3. More details about simulation experiments

Manipulation skills in RLbench. We select 10 language-
conditioned skills from RLBench [3], each involving at
least two variations. An overview of these skills can be
found in Table 3. The variations include random sampling
of object colors, sizes, quantities, placements, and cate-
gories, resulting in a total of 166 distinct combinations.
The color set consists of 20 different colors: red, maroon,
lime, green, blue, navy, yellow, cyan, magenta, silver, gray,

orange, olive, purple, teal, azure, violet, rose, black, and
white. The size set includes two options: short and tall. The
count set has three possible values: 1, 2, or 3. The place-
ments and object categories are skill-specific. For instance,
the ”open drawer” skill has three placement options: top,
middle, and bottom. Additionally, objects are randomly
placed on the tabletop in various poses within a defined
range.
The experimental details of iManip in the B5-5N1 setup.
In this setup, the agent is first trained on the 5 base skills,
and then a new skill is added at each step, with a total of 5
steps. The base skill includes close jar, open drawer, sweep
to dustpan, meat off grill and turn tap. The training se-
quence for the new skills is slide block, put in drawer, drag
stick, push buttons, stack blocks. Table 4 shows the success
rate of each skill at each step. The Old is the average suc-
cess rate of the old skills. For example, the Old in step 1 is
the average success rate of the five base skills. The All is
the average success rate of all learned skills at that step.

4. More details about real world experiments

In the real world experiment, we use the B1-4N1 setup,
which allows the agent to gradually learn five different skills
one by one. The five manipulation skills includes Silde toy
to target, Open drawer, Pick and place, Pour water and

Robotic skills Base Step 1 Step 2 Step 3 Step 4 Step 5
close jar 28 24 40 32 16 20

open drawer 56 72 64 68 60 64
sweep to dustpan 52 52 56 32 40 36

meat off grill 80 76 52 60 52 52
turn tap 64 64 60 60 56 56

slide block - 52 32 32 44 40
put in drawer - - 32 32 4 8

drag stick - - - 64 64 60
push buttons - - - - 16 12
stack blocks - - - - - 12

Old 56.0 57.6 50.7 45.1 42.0 38.7
All 56.0 56.7 48.0 47.5 39.1 36.0

Table 4. Performance of iManip in the setup of B5-5N1.

Close jar. Concretely, The skill of silde toy to target re-
quires the agent to move the toy to the color area specified
by the instruction. The skill of Open drawer requires the
agent to open the drawer at the corresponding position, in-
cluding variations for the top, middle, and bottom positions.
The skill of Pick and place requires the agent to grasp the
specified object and place it at the designated location. The
skill of Pour water requires the agent to pick up the water-
filled cup of a specified color and pour the water into the
mug of another specified color. Lastly, the skill of Close jar
requires the agent to grasp the bottle cap and screw it onto
the bottle. We present the keyframes of the five manipula-
tion skills in sequence in Figure 2, visually illustrating the
specific steps of the execution process.

5. Model architecture

Voxel Encoder: We employ a compact 3D UNet with only
0.3M parameters to encode the input voxel of size 1003×10
(which includes RGB features, coordinates, indices, and oc-
cupancy) into our deep 3D volumetric representation, re-
sulting in a size of 1003 × 128.
Original PerceiverIO. The Extendable PerceiverIO in
iManip is an improvement upon the original PerceiverIO
[2]. A detailed explanation of the original PerceiverIO is
provided here to offer a more comprehensive understanding
of our Extendable PerceiverIO.

The original PerceiverIO consists of 6 attention blocks
designed to process sequences from multiple modalities
(such as 3D volumes, language tokens, and robot propri-
oception) and output a corresponding sequence. To effi-
ciently handle long sequences, the Perceiver Transformer
uses a small set of latents to attend to the input, improving
computational efficiency. The resulting output sequence is
then reshaped back into a voxel representation to predict
the robot’s actions. The Q-function for translation is pre-
dicted using a 3D convolutional layer. For predicting open-

ness, collision avoidance, and rotation, we apply global max
pooling and spatial softmax to aggregate 3D volume fea-
tures, and then project the aggregated feature to the output
dimension using a multi-layer perceptron.
Model inference. The agent obtains the current observa-
tion state, including RGB-D, proprioception, and textual in-
structions, and predicts the end-effector pose for the next
keyframe. It then uses a predefined motion planner (e.g.,
RRT-Connect) to solve for the motion path and joint con-
trol angles. This approach reduces the sequential decision-
making problem to predicting the optimal keyframe action
for the next step based on the current observation.

References
[1] Ricardo Garcia, Shizhe Chen, and Cordelia Schmid. To-

wards generalizable vision-language robotic manipulation:
A benchmark and llm-guided 3d policy. arXiv preprint
arXiv:2410.01345, 2024. 1

[2] Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals,
Andrew Zisserman, and Joao Carreira. Perceiver: General
perception with iterative attention. In International conference
on machine learning, 2021. 3

[3] Stephen James, Zicong Ma, David Rovick Arrojo, and An-
drew J Davison. Rlbench: The robot learning benchmark &
learning environment. IEEE Robotics and Automation Letters,
2020. 2

[4] Tsung-Wei Ke, Nikolaos Gkanatsios, and Katerina Fragki-
adaki. 3d diffuser actor: Policy diffusion with 3d scene repre-
sentations. arXiv preprint arXiv:2402.10885, 2024. 1

[5] Mohit Shridhar, Lucas Manuelli, and Dieter Fox. Perceiver-
actor: A multi-task transformer for robotic manipulation. In
Conference on Robot Learning, 2023. 1

[6] Yanjie Ze, Ge Yan, Yueh-Hua Wu, Annabella Macaluso, Yuy-
ing Ge, Jianglong Ye, Nicklas Hansen, Li Erran Li, and Xi-
aolong Wang. Gnfactor: Multi-task real robot learning with
generalizable neural feature fields. In Conference on Robot
Learning, 2023. 1

Time

C
lo

se
 j

ar
O

p
en

 d
ra

w
er

P
ic

k
 a

n
d
 p

la
ce

P
o
u
r

w
at

er

S
li

d
e

to
y

Figure 2. Keyframes for real robot manipulation skills.

	Experiments on key hyperparameters
	More exploratory experiments
	More details about simulation experiments
	More details about real world experiments
	Model architecture

