Supplementary material - TAPNext: Tracking Any Point as Next Token Prediction

A. Frequently Asked Questions

¢ Is there a reason for categorization of frame/window/video
latency? Can’t we just run any model e.g. with frame
latency (at timestep ¢ we feed frames 1, 2, - - - , ¢ and obtain
track prediction right after the frame ¢ was “fed”)

— This indeed may even turn offline trackers into online
ones. However, we would argue that this effectively
won’t solve the latency problem. The reason is that
when such a tracker receives the new frame, it needs to
reprocess either all previous frames (for offline trackers)
or a window of several recent frames (for window-based
trackers). In either case, the time before the prediction
is significant effectively disallowing real-time tracking
at a high frame rate (see Table 2 for quantification).

* Why does TAPNext require so much more data and time
to train?

— TAPNext is a much more generic model, performing
only attention and SSM scanning without any custom
components. The generality of TAPNext comes at the
cost of much higher compute needed for training (i.e. a
large batch and longer optimization).

* TAPNext uses more synthetic and real data to train than
previous methods. What is the performance of previous
methods given such big datasets remains unclear.

— Currently there is no standartization of which dataset to
use, among previous methods. For exampe, TAPIR uses
100000 videos with camera panning enabled but no mo-
tion blur. LocoTrack uses 11000 synthetic videos for
training with panning but no motion blur. TAPTR uses
also uses 11000 training videos which inlude motion
blur but don’t include camera panning. All aforemen-
tioned methods use 24 frames videos while CoTracker3
trains on synthetic videos of 64 frames and its training
dataset includes only 6000 training videos at the resolu-
tion of 512 x 512 (compared to 256 x 256 for previous
methods). This way all previous methods use training
datasets of different size (which is varied by two orders
of magnitude between CoTracker3 and TAPIR), length,
resolution and visual properties (motion blur, camera
panning).

* How does TAPNext learn to recover from occlusions?

— For each point query TAPNext has the corresponding
sequence of SSM recurrent hidden states (since SSM is
a form of RNN) that contain the information about the
tracked point. Even when the visaul occlusion happens,
this information is still being processed by recurrent

SSM and the corresponding output predicts the coordi-
nate and occlusion flag.

* Why claiming that the method generalizes to 5x longer
videos? This seems to be a weaker statement than prior
methods can do given that they track potentially infinite
videos.

— TAPNext marks the new stage of point tracking methods
with no (tracking) inductive biases that are entirely data
driven. On one hand this gives scalability and SOTA
tracking quality that comes from the scale of the model
and data. On the other hand, due to that it is harder to
satisfy guarantees like robustness to long videos. We
hope that future research will address this problem of
long term tracking of end-to-end trained models.

* Why not putting the TRecViT into the related work?

— While TRecViT is a strong visual backbone, TAPNext
could use other video backbone. Our selection of
TRecViT was dictated by its efficiency - not only it re-
quires significantly less time and memory to train (than
e.g. a purely attention counterpart), it also processes
videos online and needs only one previous recurrent
state to perform inference. Due to this reason and since
TAPNext’s idea is connected to how TRecViT processes
tokens, we included the description of the latter.

B. Ablations

Please find ablations in Tables 4 and 5.

C. Scalability of Baselines

To provide evidence for scalability of inductive-bias free
architectures, we perform the scalability analysis of TAPIR,
which is one of the most popular point trackers. Table
3 shows how the Average Jaccard (AJ) evaluation metric
changes as we increase the size and video length of the train-
ing data. As the result suggests, TAPIR is not able to benefit
from a larger scale data.

Kubric Kubric DAVIS RoboTAP DAVIS Kinetics
Train Val Strided First First First

Default Kubric 10K / 24f 81.7 81.8 59.5 58.9 54.4 52.1
Panning Kubric 500K /48f  76.5 76.5 58.0 56.5 52.7 51.0

TAPIR

Table 3. Average Jaccard (%) comparison between TAPIR models
trained on different dataset scales and frame lengths.



Figure 5. Video Completion by TAPNext variant. Left: Outputs of patch-level linear pixel heads. Right: Inputs to the model (Visible or
masked image and points).



Type of Ablation: Average
default value — ablated value Jaccard
TAPNext-S default (small scale run) 55.0
Classification Regression
coordinate head - coordinate head 447
2x state expansion [10] No SSM 53.8
in SSM state expansion 09
Losses after each . No intermediate 50.5
ViT Block losses '
Regression + Classification Classification
. . 52.7
coordinate loss coordinate loss
Regression + Classification Regression
. . 48.1
coordinate loss coordinate loss
Image patch 8 x 8 —  Image patch 16 x 16 \ 49.7

Table 4. Ablating of the main components of TAPNext-S. We train
each model for 150, 000 steps and batch size 128 and on 24 frames
(compared to 300, 000 steps, batch 256, and 48 frames for the main
TAPNext models in Table 1). We evaluate every ablation on DAVIS
query-first. All ablations are independent of each other.

TAPNext Average Jaccard  Average Jaccard
Variants 24 Frames Full length
Temporal Attention 68.4 17.3
Temporal SSM 70.0 55.0

Table 5. Temporal attention ablation of TAPNext-S (under the same
protocol as Table 4). We change the temporal SSM block to the
temporal attention block [48] that uses rotary positional embed-
dings [45]. SSM blocks enable much better temporal generalization
in TAPNext beyond the 24 frame training sequences.

D. Attention visualization

For convenience, larger versions of Figures 3 and 4 are re-
produced in the appendix as Figures 6 and 7. We also show
the raw spatial attention maps of the attention heads from
the same layer in Figure 8. Full videos of attention visu-
alization can be found in the supplementary files. Notably
in the point-to-point attention video there is strong connec-
tion between clusters on different objects, but as the video
progresses and the objects (colored in red and blue) move
independently these connections quickly disappear. This
hints at the model’s emergent motion segmentation ability.

E. Additional Evaluations of TAPNext

To further assess the temporal extrapolation capabilities of
TAPNext, we evaluate the model on RoboTAP [53], which
we group by video length. Table 6 show the result of these
evaluations. The result suggests that TAPNext is capable of
reliably tracking videos of length up to around 300 frames,
aligning with our previous claim on the 5x extrapolation
capabilities of TAPNext.

Table 7 shows evaluation of TAPNext on two ex-
tra datasets — RoboTAP and RGB-Stacking. The non-
bootstrapped version of the model shows SOTA performance
of RGB-Stacking. The bootstrapped version shows the sec-
ond best performance after CoTracker3.

100 200 300
-200 -300 -500

BootsTAPIR 797 676 61.0 50.0 53.2
TAPNext 827 703 595 384 184
BootsTAPNext 853 74.2 643 463 21.6

#Frames <100 >500

Table 6. Average Jaccard (%) on RoboTAP under varying Max
#Frames bins.

RoboTAP RGB-S

Model First First
CoTracker3 66.4 71.7
TAPNext 60.1 77.2

BootsTAPNext  64.6 66.2

Table 7. Average Jaccard (%) on RoboTAP and RGB-Stacking.

F. Joint-Tracking and Support Points

AJ | PTS (6"9) | OA
62.2 ‘ 76.1 ‘ 90.9
| |

+ 9x9 local grid

Individual Points + 4x4 global ‘

6

NS}

4 76.6 90

W

Joint Points

Table 8. Comparison of joint query point tracking v.s. individual
queries and support points on DAVIS first evaluation of TAPNext-B

Because TAPNext processes query points jointly there is a
concern that semantic correlation between query points can
give it an unfair advantage compared to methods that process
queries individually. Therefore we use the methodology
from Cotracker [26, 27] to evaluate tracking of one point
at a time with additional query points sampled from local
and global regular grids. Similar to Cotracker we found
that TAPNext benefits from mainly from a local support
grid of points (Figure 9). We found no major difference in
performance between the one point evaluation (with the best
support point scheme) compared to evaluating on all query
points jointly, see Table 8.

G. Coordinate Prediction via Classification

The coordinate prediction head of TAPNext predicts (z, y) €
[0, H] x [0, W] coordinates. The x and y coordinates are



Figure 6. Three attention patterns learned by TAPNext. We visualize attention maps where the attention queries are the point track tokens
and the keys are image tokens, which correspond to 8 x 8 patches. Each row is a certain (layer, head) pair. We observe patterns: (top)

Cost-volume-like attention head; (middle) Coordinate-based readout head; (bottom) motion-cluster-based readout head. Note that these are
just intermediate heads in the backbone.

Figure 7. Point-to-point attention map visualizations. Tracked points are nodes and (scaled) attention weights are edges, the thicker the edge
the higher the weight between points. Two frames from a video are used to visualize two attention layers. Note that in all images we see
strong attention between points on objects that are moving together.



Figure 8. X-axis: layers; Y-axis: attention heads. We visualize attention maps for the TAPNext-S model which has 12 layers and 6 attention
heads. We visualize the same video as in Figure 6, specifically the timestep corresponding to the leftmost column. Also, we use the same
geury point as in Figure 6. The attention maps visualize the attention where query is the track tokens and key is image patch, we visualize it
for every head in every layer. The patterns found in Figure 6 moslty are repeated accross the model.

discretized into n = 256 values, corresponding to pixel lo-
cations, and the head outputs the discrete distribution (p;
where 0 < @ < n, p € R™) for both coordinates indepen-
dently. In particular, each point token is passed to the MLP
where the last layer is softmax. To obtain the final, sub-pixel,
coordinate we use the truncated soft argmax operation (the
same as TAPNet [11]). First we truncate the probability
distribution around argmax: we set all probability bins that
are more than A steps away from argmax to zero (A = 20
in our experiments). After that we renormalize the probabil-
ity distribution since after setting some probability bins to
zero, the result is no longer a probability distribution. After
we compute the new truncated probability distribution, we
simply compute the expected probability bin:

L HL ( p; - 1[|j — arg max p| < A] >
p=2 |05
n > pe1 Pk - L[|k — argmax p| < A]

The above equation defines the continuous coordinate

prediction Z for the x coordinate (valued in the range [0, H]).

We use the same formula to compute the prediction for the y
coordinate denoted 4.

This parameterization can be very easily implemented in
Jax:

import jax.numpy as Jjnp
def trunc_softargmax(p, delta=20):
n = p.shape[0] # p is vector
js = jnp.arange (n)
j = Jjnp.argmax(p)
m jnp.abs (js - j) <= delta
p *x=m
p /= p.sum()
return (p * Js).sum()

As we mention earlier, we use two loss functions for co-
ordinate prediction: Huber loss on the continuous prediction
(2 and g) and softmax cross entropy for discrete prediction

(pz and py):

L(JI, yavapy) = UJlLH(Jj, j) + w2LH(iU; Z))
+ w3 Lo (one_hot(z), p.)
+ wa Lo (one_hot(y), py)

Ly is the huber loss, L¢ is the softmax with crossentropy
loss. Coefficients w1, wo, w3, w4 are weights applied to each
loss component. In our experiments, we use w; = wo = 0.1
and w3 = wyg = 1.0. This combined loss is applied to
every layer. This means that the 7" x @ point track tokens
after every ViT block are fed to the coordinate heads (shared
MLPs with softmax output) and the the aforementioned loss
is applied to the outputs of the coordinate heads. Similarly,
the visibility head which is also an MLP with the sigmoid
as the final activation. The loss for this head is binary cross
entropy. Like the coordinate head, the visibility head is
applied to every layer.



Note that, despite using a parameterization that produces
bounded ranges for coordinate values ((z,y) € [0, H] x
[0, W], it is still possible to predict (of course, not with the
same trained model) the coodinates out of the view, similarly
to what other models (e.g. CoTracker [26]) do. For that,
we could simply map e.g. the x coordinate to some range
[—d, H + d] instead of [0, H] for some positive d. This
way, some probability bins would be responsible for out-of-
view prediction while some other will do in-view prediction.
Since out-of-view prediction is not a part of the TAP-Vid
benchmark, we do not use it.

H. TAPNext Hyperparameters

We sample batches containing query points of shape
[B, Q, 3], where B = 256 is the batch size, @ = 256 num-
ber of query points per video. The last dimension represents
the ¢, z, y coordinate of each query point. Importantly, we
train our model on a mixture that simulates query point being
in the beginning of the video (¢t = 0) and at the intermediate
timestep (¢ > 0). The weights of this mixture are [0.8,0.2],
respectively. The ¢ = 0 mixture component contains query
points queried at the 0 frame in the video. The ¢t > 0 mix-
ture component contains the ones queried at any timestep,
not necessarily starting at the 0" frame. Since our model
is causal, it cannot track points before point query is given.
Therefore, for the second component we mask the coordi-
nate losses for frames preceding the known query and set
the visibility label to zero. We use a weight of 1.0 for both
visibility and coordinate classification losses, and 0.1 for
coordinate regression. We use the AdamW optimizer with
weight decay of 0.01 for 300, 000 steps using a cosine learn-
ing rate schedule with 2500 warm-up steps, peak and final
learning rate values of 0.001 (for -S model) and 0, respec-
tively. We clip gradient norm to 1.0. We found it important
to use 8 x 8 patches, smaller than the 16 x 16 used in ViT for
classification, aligning with the intuition that smaller patches
work well for spatially fine-grained tasks.

| Name | TAPNext-S | TAPNext-B

layers 12

parameters 56M ‘ 194M

attention heads 12 12
ViT Block | width 384 768

dropout 0.0 0.0

width 384 768
SSM Block | LRU width 768 768

heads 12 12

Table 9. TAPNext hyperparameters specific to each size of the
model.

The full list of hyperparameters is available in Tables 9

and 10. We implement the model in Jax and use TPUv6e for
training. Specifically, we use 16 x 16 TPU slice to train both
TAPNext-S and TAPNext-B. Since we are using a large batch
(B x T = 256 x 48 = 12288 images in our case), we use
activation checkpointing (implemented in the same way as
in the original ViT*). This setup is roughly equivalent to 50
H100 GPUs in both compute and memory and our training
takes 4 days for TAPNext-S and 5 days for TAPNext-B. Note
that despite a large compute and memory requirement for
training, TAPNext inference runs quickly on a single GPU
(see Table 2).

I. Strided Evaluation with TAPNext as Causal
Tracker

Recall that in training when TAPNext is trained on queries
att > 0 (i.e. after the 0t frame), the coordinate losses
corresponding to frames preceding the query is masked and
visible target is set to 0.0. For complete and comparable
evaluation, however, we require track predictions for every
frame in the sequence. To obtain these predictions with our
causal, per-frame tracker, we run the tracker both forwards
and backwards in time starting at the frame corresponding to
the query. These two sequences of predictions corresponding
to normal and reverse time processing are then concatenated
together to obtain the full sequence of prediction. For strided
evaluation this process is repeated for every query point in
the sequence.

J. Generation Pipeline for a Large Scale Syn-
thetic Dataset

The original MOVi-F is similar to MOVi-E but includes ran-
dom motion blur and is rendered at 512 x 512 resolution,
with a 256 x 256 downscaled option. To enhance model
performance on real-world videos with panning, we modify
the MOVi-E dataset to adjust the camera’s “look at” point to
follow a random linear trajectory by sampling a start point
a within a medium-sized sphere (4 unit radius), a travel-
through point b near the center of the workspace (1 unit ra-
dius), and an end point c extrapolated along the line from a to
b by up to 50% of their distance. The "look at" path randomly
switches between a — ¢ and ¢ — a. This modification ini-
tially resulted in a 100K video Panning Kubric MOVi-E
dataset. To further exploit the scalability of TAPNext and
improve its generalization capability to longer real world
videos, we developed a new Panning Kubric MOVi-F data
generation pipeline, combining data generation pipelines
from both Kubric [18] and TAPIR [12]. Building on this,
we created a new large-scale Panning Kubric MOVi-F dataset
with 500,000 videos. The rendered videos combine both pan-
ning effect and motion blur. We then increase each video

“https://github.com/google-research/big_vision/blob/main/big_vision/models/vit.py



Name Value
Optimization
Optimizer AdamW
Global batch size 256
Number of queries per video 256
Max gradient norm 1.0
Weight decay 0.01
Number of optimization steps 300,000
Warmup linear
Number of warmup steps 2500
LR before warmup 0
LR schedule cosine
Peak LR (TAPNext-S) 0.001
Peak LR (TAPNext-B) 0.0005
Final LR 0
Precision float32
Regression loss weight(s) 0.1
Classification loss weight(s) 1.0
Data
Dataset size (videos) 500.000
Dataset resolution 256 x 256
Number of frames per video 48
Camera panning Enabled
Motion blur Enabled
Prob. of sampling query with ¢ = 0 0.8
Prob. of sampling query with ¢ > 0 0.2
Model
Patch size 8§ x 8
Image position embedding learned
Point position embedding sincos2d
Point position embedding resolution | 256 x 256
MLP head number of layers 3
MLP head hidden size 256
MLP head activation GELU
Softargmax threshold (A) 20
Coord. softmax temperature 2
Huber loss weight 0.1
Coordinate CE loss weight 1.0
Visibility CE loss weight 1.0

Table 10. TAPNext hyperparameters

duration from the default 24 frames to 48 frames. These
enhancements allow more robust training and long term in-
ference stability for TAPNext, addressing the challenges
posed by real-world long term point tracking. Figure 10

shows the comparison between the new dataset and existing
ones.

K. Prediction Visualization on DAVIS

We present additional examples of point track predictions
from TAPNext on the TAPVid-DAVIS dataset in Figure 11.
All DAVIS track videos can be found in the supplemen-
tary files. The query points are all initialized in the first
frame, and TAPNext performs tracking in a causal manner.
While the model occasionally makes errors over longer time
spans due to the inherent challenges of maintaining long-
term precision in causal tracking, TAPNext demonstrates
robust performance by reliably tracks points across a wide
range of scenarios, including foreground and background
elements, as well as small and large motions.



Average Jacard (A))

Global grid

T T T T
4x4 5x5 6x6 7x7 8x8 9x9 10x10
Local grid

Occlusion Accuracy (OA)

T
=
o
T
Qo
©°
o
4x4 5x5 6x6 7x7 8x8 9x9  10x10
Local grid
Average Point Accuracy (PTS)

=

=

o

T

Qo

°

o]

T T T T
4x4 5x5 6x6 7x7 8x8 9x9 10x10
Local grid

Figure 9. One point at a time tracking performance with various support points grid configurations.



L TR TR

DTN
. e

;18
!

e+ 4
Secmsamenes s
9

Figure 11. Prediction on TAPVid-DAVIS — We show the tail
visualization of semi-dense point track predictions for 5 example
videos on DAVIS dataset. For each video, we show the first query
frame, 20th frame and 40th frame.

(d) MOVi-F Panning dataset (Ours)

Figure 10. Kubric dataset comparison — We show two exampler
videos for each dataset with first frame, middle frame and last
frame, with groundtruth point tracks.



