
Appendices
In the appendices, we provide more detailed results in addi-
tion to our main paper, including additional ablation study,
additional discussion on FlashAttention, and additional re-
sults on video benchmarks.

A. Addtional Ablation Study

Ablation study for additional frames. As shown in
Table A, dense frames can improve the performance of
VideoMME and MLVU. In comparison, our method not
only reduces computation cost significantly, but also cre-
ates a token sequence with less redundancy, which in return
further improves performance across all three benchmarks.

Ablation study for token merging across frames. We
conducted additional experiments with temporal merging,
where tokens from adjacent frames are merged iteratively.
As shown in Table B, merging across frames leads to de-
graded performance, especially at lower retention ratios,
validating our hypothesis in main paper that temporal merg-
ing disrupts the temporal order of tokens, resulting in a neg-
ative impact on performance.

Ablation study for base models. We conducted additional
experiments with Qwen2-VL-7B-Instruct [69] and adjusted
MAX PIXELS to a smaller value due to GPU memory lim-
itations. While LLaVA-Prumerge [62] is one of our base-
lines in the paper, it is not compatible with Qwen2-VL.
This is because LLaVA-Prumerge assumes the use of an
image-level CLS token, whereas Qwen2-VL encodes sam-
pled video frames together and does not have an image-level
CLS token. Results of FastV and our method applied to
LLaVA-OV and Qwen2-VL are reported in Table C. Our
method consistently outperforms the baseline while requir-
ing fewer FLOPs and prefill time (same conclusion as Table
1 in paper). We also notice that the performance drop with
Qwen2-VL is larger than with LLaVA-OV. It is likely due
to the video encoder in Qwen2-VL, which mixes features of
all frames. As shown in above paragraph, cross-frame token
merging may disrupt temporal order and is less effective.

B. Additional Discussion on FlashAttention
Our method explores token merging and pruning for adap-
tive inference in multi-modal LLMs, a direction that is or-
thogonal to works on improving LLM efficiency, such as
quantization [10], sparse attention [7], and efficient atten-
tion (e.g. FlashAttention [9]). Notably, our method is com-
patible with quantization and sparse attention, yet not with
optimizations like FlashAttention (FA), where attention val-
ues are not explicitly computed. This is because, similar to
prior work on token pruning [5], our method relies on at-
tention values for selecting tokens. In Table D, we conduct

Model VideoMME MLVU Egoschema

LLaVA-OV 58.2 64.7 60.1
LLaVA-OV + 128 frames 58.4 67.7 59.8
LLaVA-OV + 128 frames + Ours 58.9 69.0 60.5

Table A. Ablation study for dense frames on long video under-
standing.

Retention Ratio 50% 25% 12.5% 6.3% 3.1%

Temporal Merging 57.9 55.8 54.5 50.4 47.4
Spatial Merging (our default) 58.5 58.0 56.6 53.6 52.3

Table B. Ablation study for temporal or spatial merging on
VideoMME.

Model FLOPs Prefill Time VideoMME MVBench MLVU Egoschema

LLaVA-OV 99.63 439.58 58.2 56.7 64.7 60.1
FastV [5] 21.24 79.56 55.9 55.9 61.1 57.5
Ours 14.76 55.03 58.2 57.1 63.7 59.6

Qwen2-VL 61.90 252.88 55.2 62.6 58.2 61.5
FastV [5] 14.07 51.11 51.2 57.7 54.2 57.7
Ours 9.96 36.76 52.8 62.6 57.2 58.1

Table C. Ablation study for different base models.

Inference FLOPs (TB) Prefill Time (ms)

Token Merging 22.90 83.93

Token Merging & FlashAttention 22.90 79.10

Token Merging & Token Pruning 14.76 55.03

Table D. Ablation of FlashAttention vs. pruning on VideoMME.

a cost-benefit analysis to compare our token pruning with
FA. Our method reduces much more prefill time than FA
(e.g., -28.90 ms vs. -4.83 ms). In fact, even though FA im-
proves the efficiency of attention mechanisms, with large
token numbers, the computation cost remains high. Inte-
grating the idea of FA and token pruning might be possible
(e.g. sequence parallelism, matrix approximation), which
we leave as future work.

Further, FA was introduced to reduce memory I/O access
and accelerate computation, making it particularly benefi-
cial for model training, where backward propagation de-
mands substantial memory and compute resources. How-
ever, during inference, its advantages are less pronounced,
and its use becomes optional. Instead, the number of to-
kens processed plays a more significant role in inference
efficiency, as shown in Table D.

C. Additional Results on Video Benchmarks
Our method is characterized by the adaptive inference that
can adjust accuracy-efficiency trade-offs based on contex-
tual factors, such as the FLOP budget. Below, we present
more results of adaptive inference on video benchmarks by



Model FLOPs Prefill Time
VideoMME MVBench MLVU EgoSchema NextQA PerceptionTest

(TB) (ms) wo / w-subs test m-avg test mc val

Video LLMs

LongVA-7B [92] 381.09 2186.04 52.6 / 54.3 - 56.3 - 68.3 -

LLaVA-OV-7B [33] 99.63 439.58 58.2 / 61.5 56.7 64.7 60.1 79.4 57.1

Training-free Method Applied during Inference

LLaVA-Prumerge [62] 23.65 86.89 57.0 / 59.9 56.5 60.6 61.0 77.6 55.8

Ours 22.06 84.36 58.0 / 61.3 57.3 64.4 59.8 78.3 56.7

Ours 14.76 55.03 58.2 / 61.3 57.1 63.7 59.6 78.4 56.0

Table E. Additional results on video benchmarks. Supported by our adaptive inference method, we can adjust the parameters in our method
to achieve different accuracy-efficiency balance. In this table, we add one of our model variants that consumes more computation resources
while achieving slightly better accuracy than our default model.

assuming a target FLOP budget.
In Table E, to match the computation cost of baseline

method LLaVA-Prumerge (i.e., 23.65 FLOPs), we adjust
the parameters of our method and create a model variant
with comparable computation demand (i.e., 22.06 FLOPs).
Despite fewer FLOPs, this model variant again largely out-
performs LLaVA-Prumerge across most benchmarks (e.g.,
+1.0 on VideoMME, +3.8 on MLVU, +0.9 on Perception-
Test). Further, compared to our default model, this model
variant achieves comparable performance on most bench-
marks and slightly better results on others (e.g., +0.7 on
MLVU, +0.7 on PerceptionTest). These results showcase
the flexibility of our adaptive inference method, which can
optimize the accuracy-efficiency trade-off to fit with spe-
cific contextual requirements.


