AMDANet: Attention-Driven Multi-Perspective Discrepancy Alignment for
RGB-Infrared Image Fusion and Segmentation

Supplementary Material

1. Supplementary Content

This supplementary material presents additional experimen-
tal results that are omitted from the main paper due to the
space limit. In this supplementary material, we provide:
— visualization results of semantic segmentation on FMB,
PST900, and MFNet datasets (Sec. 2);
— visualization results of image fusion on FMB, PST900,
and MFNet datasets (Sec. 3);
— a discussion of the hyperparameters of the L;,:q; l0ss
function (Sec. 4);
— adiscussion for the threshold 7 of the SCT (Sec. 5);
— a discussion for the Local-Alignment and Global-
Alignment of the FDAM (Sec. 6);
— performance analysis of Local-Alignment (Sec. 7)
— analysis of failure cases (Sec. 8)

2. Semantic Segmentation Results

To intuitively compare the performance of our method with
advanced methods such as SegMiF [3] and MRFS [6] in se-
mantic segmentation, Fig. 2, 3, and 4 present segmentation
results on the FMB [3], MFNet [2], and PST900[4] datasets.
From the first and second rows of Fig. 2, it can be observed
that in nighttime environments, the differing imaging prin-
ciples of infrared and visible light sensors result in signifi-
cant feature discrepancies between the different modalities.
These substantial inter-modal feature differences cause ex-
isting methods to retain some of the disparate features when
constructing consistent fusion features, making it difficult to
accurately segment fine and small objects. For instance, in
the first row of Fig. 2, distant traffic signs are not segmented
accurately by other methods. In contrast, our model utilizes
anti-discrepancy causal inference to eliminate the discrep-
ancies between multi-modal features, ensuring the accuracy
of constructing fusion features. Benefiting from this com-
prehensive elimination of feature discrepancies, our method
achieves more desirable semantic segmentation results. The
same conclusion can be drawn from Fig. 3 and 4. For ex-
ample, in the third row of Fig. 4, our method identifies and
segments a person riding a bicycle in the distance more ac-
curately.

3. Image Fusion Results

To intuitively compare the performance of our method with
advanced methods such as SegMiF and MRFS in image fu-
sion, Fig. 5, 6, and 7 present fusion results on the FMB,
MEFENet, and PST900 datasets. As shown in Fig. 5, com-

pared to other methods, our approach demonstrates superior
performance in enhancing fine texture details and improv-
ing realistic visual quality. For instance, in the fourth row
of Fig. 5, under smoke-obscured conditions, the fusion re-
sults generated by other methods struggle to highlight the
contours of the person behind the smoke. In contrast, our
method effectively utilizes the features provided by the in-
frared image, clearly presenting the obscured person’s char-
acteristics. The reason for the above results is that we use
the mutual feature mask learning strategy to promote the
fusion of multimodal features, making the results directly
reflect the complementary features between different modal
features. Similar conclusions can be drawn from Fig. 6 and
7. For example, in the first row of Fig. 6, our method more
clearly delineates the structural contours of pedestrians, and
in the second row of Fig. 7, our method highlights the back-
pack with more prominent features independent of the back-
ground.

4. Discussion of the Hyperparameters (o, oo,
and ;)

In the loss function L;,:,; used by our ADMAnet, we bal-
ance the contributions of the semantic segmentation loss
a1 Lgeq, image fusion loss aa L fys, and mask consistency
regularization loss a3 L., during model training by adjust-
ing the hyperparameters a; = 1, ag = 0.5, and ag = 0.5.
To validate the rationality of the selected hyperparameters,
we discuss the effects of different o1, oo, and a3 on the
model’s performance in Tab. 1, 2, and 3. The experiments
evaluate the model’s performance using the mean Intersec-
tion over Union (mloU) metric.

Hyperparameter o;;. As shown in Tab. 1, the model’s
performance on all three datasets gradually decreases as o
decreases, with the worst performance observed at a; =
0.3. This result indicates that a smaller «; limits the
model’s ability to learn how to construct features conducive
to semantic segmentation from labeled data, leading to a
disconnect between the constructed features and the seg-
mentation task. In contrast, when o; = 1, the model re-
ceives a stronger penalty related to the semantic segmenta-
tion task, enabling it to focus more on constructing fusion
features suitable for segmentation.

Hyperparameter as. As shown in Tab. 2, the model’s
performance significantly decreases when a smaller ay =
0.3 is used. This is because the lack of strong supervision
for the fusion process prevents the model from constructing
accurate multimodal fusion features. Conversely, when a



Table 1. Evaluation of the a1 (a2 = 0.5, g = 0.5).

Table 4. Evaluation of the Threshold 7 of the ACT.

Dataset a1=0.3 a1=0.5  «a1=0.7 ap=1 Dataset 7=0.2 7=0.4 7=0.6 7=0.8
MFNet 58.7 60.2 61.6 62.1 MFNet 60.3 62.1 60.7 60.4
FMB 59.5 62.6 63.5 64.8 FMB 61.3 64.8 63.5 62.6
PST900 80.9 86.5 88.1 88.5 PST900 854 88.5 87.2 86.3

Table 2. Evaluation of the ais (a1 = 1, a3 = 0.5).

Dataset a2:0.3 a2:0.5 042=0.6 a2=0.7
MFNet 60.5 62.1 61.8 61.3
FMB 61.8 64.8 63.6 63.3
PST900 85.4 88.5 88.2 87.6

Table 3. Evaluation of the a3 (a1 = 1, a2 = 0.5).

Dataset 013=0.3 013=0.5 043=0.6 043=0.7
MFNet 59.4 62.1 61.2 60.7
FMB 61.2 64.8 64.2 61.3
PST900 86.7 88.5 88.3 84.6

larger ao = 0.7 is used, performance also declines, as ex-
cessive focus on the fusion results causes the model to over-
look the construction of fusion features suitable for seman-
tic segmentation. In contrast, when oy = 0.5, the model
efficiently balances the fusion and segmentation processes,
achieving optimal performance.

Hyperparameter «3. As shown in Tab. 3, compared
to ag = 0.3, the model performs better when a3 = 0.5.
This improvement is attributed to the fact that a larger a3 al-
lows the model to focus more on leveraging the inter-feature
mask learning strategy to enhance multimodal feature fu-
sion. However, the value of a3 is not necessarily better
when it is larger. When a3 = 0.7, the network’s perfor-
mance experiences a significant decline. This is because
the inter-feature mask learning strategy is a complex con-
trastive learning approach. Over-reliance on this strategy
increases the model’s learning difficulty, making it chal-
lenging to construct fusion features for segmentation.

5. Discussion for the Threshold 7 of the SCI

In the semantic consistency inference (SCI), we utilize se-
mantic similarity as a bias indicator to measure the semantic
consistency between modalities. Specifically, we introduce
a threshold 7=0.4. When the semantic similarity between
modalities is less than 7, the current multimodal features
are considered to be significantly influenced by the bias of
the encoder. To validate the rationality of 7=0.4, we com-
pare the impact of different 7 values on model performance.
As shown in Tab. 4, when 7 is set to larger values (e.g.,
0.6 and 0.8), the model’s performance declines. This is
because a larger 7 causes the model to overlook too many
cross-modal semantic similarity features. Conversely, when

Table 5. Ablations of the local-alignment and global-alignment.

Local- Global-
Dataset Alignment  Alignment SFE ‘ mloU ‘ mAP
X v v 59.2 73.9
X v 58.5 71.7
MFNet v v X 61.2 75.8
(%4 v v 62.1 77.1

T is set to a smaller value (e.g., 0.2), the model’s perfor-
mance also decreases. This is because a smaller 7 leads the
model to excessively focus on inter-modal discrepancy fea-
tures, increasing the risk of incorporating irrelevant discrep-
ancies into feature fusion. Therefore, setting 7=0.4 allows
the model to fully leverage inter-modal semantic similarity
and facilitate the establishment of robust fusion features.

6. Discussion for the Local-Alignment and
Global-Alignment of the FDAM

In the Feature Discrepancy Alignment Module (FDAM),
we employ two sub-modules, local-alignment and global-
alignment, to align cross-modal feature representations
from both local and global perspectives. To demonstrate
the effectiveness of these modules, we compare their im-
pact on model performance. As shown in Tab. 5, remov-
ing either module leads to a decline in model performance.
Furthermore, compared to removing the local alignment
module, the performance drop is more significant when the
global alignment module is removed. This is because, dur-
ing feature fusion and semantic segmentation, long-range
contextual information plays a more critical role in mod-
eling continuous semantic features, thereby improving the
completeness of segmentation masks. Therefore, these ex-
periments validate the importance of aligning multimodal
features from both local and global perspectives.

In the Global Alignment sub-module, for the input fea-
ture streams, we first pass them through the Salient Feature
Enhancement (SFE) module to enhance key features across
different modalities. The purpose of SFE is to highlight
semantically reliable regions prior to cross-modal interac-
tion, suppress inconsistent responses, and guide the cross-
attention mechanism to focus more accurately on relevant
features across modalities. To evaluate the effectiveness of
SFE, we conduct an ablation study. As shown in Tab. 5, re-
moving SFE leads to a performance drop, which confirms
its effectiveness in facilitating the alignment of key features



Table 6. Quantitative comparison with CBAM and DANet.

FMB dataset ‘ MEFNet dataset
mloU mAP ‘ mloU mAP

with CBAM [5] 63.3 74.8 60.8 73.1
with DANet [1] 63.6 75.2 60.5 74.3

with Ours | 64.8 771 | 621 77.4

Method

Predict Ground truth

Low-light

Figure 1. Failure cases analysis of AMDANet.

across modalities. This also indicates that relying solely on
standard cross-attention is insufficient to capture the depen-
dencies between modalities effectively.

7. Performance analysis of Local-Alignment

To further validate the performance of Local-Alignment, we
compare it with similar attention-based methods such as
CBAM [5] and DANet [1]. The experimental results are
presented in Tab. 6. As shown in Table 7, compared to
CBAM and DANet, which both couple spatial and channel
attention, our Local-Alignment achieves a significant im-
provement in model performance. For example, compared
to CBAM, our method improves mloU by 1.5% and 1.3%
on the FMB and MFNet datasets, respectively. This im-
provement is attributed to the fact that, unlike CBAM and
DANet, our Local-Alignment extracts differential clues by
minimizing the feature residual between the input and out-
put, thereby dynamically guiding spatial and channel at-
tention while adaptively suppressing misleading features.
This approach allows for a deeper optimization of attention,
rather than simply enhancing the features.

8. Failure Cases

The core of AMDANet lies in establishing complementary
features by locating cross-modal semantic anchors. Al-
though AMDANet performs strongly in establishing cross-
modal semantic consistency features, its performance may
degrade when the features of one modality are severely
missing. As shown in Fig. |, overexposure causes semantic
degradation, leading to severe segmentation errors in AM-
DANet. This is because the loss of RGB modality features
makes it difficult to locate reliable semantic anchors, thus
hindering the establishment of semantic consistency fused

features.

To address this issue, in future work, we consider intro-
ducing an adaptive weighting mechanism. This mechanism
can automatically adjust the contribution weights of differ-
ent modalities when one modality’s features are severely
lost, reducing the impact of information loss on the model’s
performance. Additionally, by incorporating deep feature
reconstruction techniques, we can further supplement the
missing semantic information in one modality and restore
the localization of key semantic anchors, ensuring the ef-
fective maintenance of cross-modal semantic consistency.
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Visible : Infrared SegMiF MRFS Ours Ground Truth

Figure 2. Visualization results of semantic segmentation on FMB dataset. The yellow box shows areas with obvious differences.
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Visible Infrared SegMiF MRFS Ours Ground Truth

Figure 3. Visualization results of semantic segmentation on PST900 dataset. The yellow box shows areas with obvious differences.
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Figure 4. Visualization results of semantic segmentation on MFNet dataset. The yellow box shows areas with obvious differences.
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Figure 5. Visualization results of image fusion on FMB dataset. The red box shows areas with obvious differences.
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Figure 6. Visualization results of image fusion on MFNet dataset. The red box shows areas with obvious differences.
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Figure 7. Visualization results of image fusion on PST900 dataset. The red box shows areas with obvious differences.



