CoopTrack: Exploring End-to-End Learning for Efficient Cooperative
Sequential Perception
— Supplementary Material —

Jiaru Zhong!?  Jiahao Wang!
! Tsinghua University

Xiaofan Li*
2 The Hong Kong Polytechnic University

Jiahui Xu?

Zaiqing Nie!* Haibao Yu®'*

3 The University of Hong Kong * Baidu Inc.

zhong. jiaru@outlook.com, zaiging@air.tsinghua.edu.cn, yuhaibao94@gmail.com

A. Appendix Overview

In the appendix, we present 1) additional implementation
details in Sec. B; 2) extended experimental results in Sec. C,
covering inference speed analysis, backbone architecture
comparisons, ablation studies on roadside data contribution,
communication latency tests, and pose estimation error im-
pacts; 3) qualitative analyses of instance association and
tracking results in Sec. D.

B. More Details of Experiments

B.1. Implementation Details

We use two versions of the backbone: ResNet50 and
ResNet101. For ResNet50, we crop the images to 540 X
960 and set the BEV feature size to 50 x 50. For the larger
one, we keep the input image size unchanged and set the
BEV size to 200 x 200. For Griffin, we only trained the
ResNet-50 version. To reduce memory consumption, we
adopt a streaming video training approach [9, 11], which
may slow down model convergence. Consequently, for
V2X-Seq, the vehicle and infrastructure models are trained
for 48 and 24 epochs respectively in the first stage, while
the cooperative model undergoes 48 epochs of training. For
Griffin, the vehicle and UAV models are each trained for 48
epochs in the first stage, followed by 48 epochs of training
for the second-stage cooperative model.

B.2. Baseline Settings

To demonstrate the superiority of our method, we compare
it with several existing cooperative tracking methods: (1)
No Fusion: This baseline uses only the ego vehicle’s im-
ages as input and does not activate the cooperative module.
(2) Late Fusion + AB3DMOT [12]: This method follows
the tracking by cooperative detection paradigm, where de-
tection results from multiple agents are fused, and the co-
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Backbone mAP?T AMOTA?T
ResNet101 0.390 0.328
ConvNeXt-S 0.413 (+0.023) 0.429 (+0.101)

Table 1. Performance of Different Backbones on the V2X-Seq.

Method

CoopTrack-ResNet50 42.01 2.08 9.95
CoopTrack-ResNet101 131.91 2.04 8.68

MDFE CAA GBA+Aggr. Total

121.88
207.99

Table 2. Runtime of Key Modules of CoopTrack (unit: ms).
MDFEFE stands for the multi-dimensional feature extraction module,
CAA for the cross-agent alignment module, GBA for the graph-
based association module, and Aggr. for feature aggregation.

operative detection results are fed into the classic track-
ing method AB3DMOT [12]. For a fair comparison, we
use BEVFormer [6] as the detector and implement late fu-
sion following DAIR-V2X [14]. (3) BEV Feature Fusion +
AB3DMOT [12]: This method also follows the tracking by
cooperative detection paradigm but uses feature fusion for
cooperative detection. Specifically, we use BEVFormer [6]
as the detector, align the two BEV features spatially based
on relative positions, and then fuse the concatenated BEV
features using a multi-layer convolution neural network be-
fore feeding them into the decoder. (4) UniV2X [17]: This
is the first end-to-end cooperative planning method, which
includes modules for tracking, mapping, occupancy, and
planning. Since we focus on the 3D MOT task, we re-
tain only the Agent Fusion module and the tracking frame-
work, referred to as UniV2X-Track, which belongs to the
end-to-end cooperative tracking paradigm mentioned ear-
lier. (5) Other SOTA methods, including V2X-ViT [13],
where2comm [3], DiscoNet [5], CoAlign [8]. For a fair
comparison, they use the same inputs and evaluation set-
tings as ours. All methods, except for CoCa3D [4] based on
depth estimation, are implemented using BEVFormer [6].
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Figure 1. Comparison of Performance in Different Conditions.

B.3. Evaluation Metrics

To assess performance, we utilize widely recognized met-
rics in 3D object detection and tracking [1], among which
the primary indicators are Mean Average Precision (mAP)
and Average Multi-Object Tracking Accuracy (AMOTA).
Furthermore, to evaluate the transmission costs inherent in
cooperative approaches, we employ Bytes per second (BPS)
as another essential metric [14, 16]. To ensure fair compar-
ison with existing methods, we follow the evaluation proto-
cols established by UniV2X [17] and Griffin [10], reporting
performance metrics exclusively for the vehicle category.

C. More Experiments

C.1. Recent Image Backbone

We upgrade the image feature extraction backbone by re-
placing ResNet101 [2] with the more recent ConvNeXt-
Small [7] architecture. As demonstrated in our V2X-Seq
experiments (see Tab. 1), this modification yields significant
performance gains of +2.3% mAP and +10.1% AMOTA,
confirming the scalability of our approach through back-
bone compatibility.

C.2. Inference Speed

To evaluate computational efficiency, we measure the av-
erage inference time on a single NVIDIA RTX 3090 GPU
across the V2X-Seq validation set, with detailed results pre-
sented in Table 2. It can be observed that the time con-
sumption is primarily concentrated in the multi-dimensional

feature extraction module, while cross-agent alignment and
aggregation do not take much time. Consequently, with the
ResNet50 backbone, CoopTrack achieves nearly real-time
performance at approximately 10Hz.

C.3. Ablation Study of Infrastructure Images

To investigate CoopTrack’s dependence on roadside data,
we evaluate the model without infrastructure image inputs.
As shown in Fig. 1(a), while performance degrades without
roadside images, the system still surpasses the No Fusion
baseline (0.110 mAP and 0.087 AMOTA), demonstrating
the inherent robustness of our approach. This suggests that
while roadside information enhances perception accuracy,
the framework maintains functional capability when oper-
ating independently.

C.4. Influence of Communication Latency

As a critical challenge in real-world cooperative perception
systems, communication latency induces spatiotemporal
misalignment between cooperative data and ego-vehicle ob-
servations, significantly degrading perception performance
[15]. To analyze its impact on CoopTrack, we simulate de-
layed infrastructure-to-vehicle communication by introduc-
ing artificially lagged roadside data. As shown in Fig. 1(b),
experimental results demonstrate that under 500ms latency,
the system exhibits substantial performance degradation of
15.3% in mAP and 31.8% in AMOTA, highlighting the im-
portance of latency mitigation for practical deployment.

To mitigate this issue, we introduce the feature flow pre-
diction module [15] that leverages historical query states
to learn temporal dynamics and calibrate incoming infras-
tructure queries based on their timestamps. As shown in
Fig. 1(b), this module significantly enhances CoopTrack’s
robustness to latency, limiting performance degradation un-
der 500ms delay to just 3.8% in mAP and 6.8% in AMOTA,
a marked improvement over the uncompensated baseline.
While this method reflects substantial progress, further re-
search is needed to develop advanced temporal modeling
techniques and adaptive compensation strategies tailored to
variable latency.

C.5. Impact of Rotation Noise

Cross-agent feature fusion relies on accurate relative poses
between agents, where pose estimation errors can cause
spatial misalignment and degrade cooperative perception
performance. To investigate this effect, we follow V2X-ViT
[13]’s methodology by injecting noise into rotation matri-
ces under two settings: (1) noise applied solely to the cross
agent alignment module’s inputs, and (2) global noise ap-
plied throughout the framework. As illustrated in Fig. 1(c),
global noise causes significant performance degradation,
while introducing noise solely to the alignment module re-
sults in marginal decline. This reveals that although the
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Figure 2. Visualization of CoopTrack’s association results on the V2X-Seq Dataset. We visualize the association results of several key
frames in a sequence by plotting instances within the ego-vehicle-centric BEV coordinate frame, where each instance is represented by its
reference point. Matched instance pairs, including a vehicle instance and an infrastructure instance, are uniquely color-coded according to
the ID, while unmatched vehicle and roadside instances are marked distinctly in blue and green, respectively. Note that due to the close

proximity of instances, there is overlap in the figure.

alignment module takes pose parameters as input, it learns
additional implicit information from features during train-
ing to achieve robust multi-agent feature alignment in la-
tent space. The observed system-level sensitivity primar-
ily stems from reference point perturbations rather than the
alignment mechanism itself. Reducing the impact of pose
noise remains an important direction for future research.

D. Qualitative Analyses

D.1. Association Results

As shown in Fig. 2, we visualize instance association results
for specific frames in a sequence within the ego-vehicle-
centric BEV coordinate frame, where each instance is rep-
resented by its reference point. Successfully matched in-
stance pairs, including both vehicle and infrastructure in-

stances, are assigned unique IDs and labeled with colors
from a predefined palette based on their IDs. In contrast,
unmatched vehicle instances and roadside instances are dis-
played in blue and green, respectively. Note that due to
the close proximity of instances, there is overlap in the
figure. These results demonstrate that our association ap-
proach achieves pairing without relying solely on Euclidean
distance, exhibiting strong robustness. For example, con-
sider a pair of instances located within the 20-30 meter
range along the x-axis and near -10 meters along the y-
axis (pair-11 in Fig. 2(a), pair-14 in Fig. 2(b), pair-12 in
Fig. 2(c), and pair-13 in Fig. 2(d)). Due to inevitable in-
accuracies in the reference points of vehicle and roadside
instances, their relative distance varies and reaches a maxi-
mum in Fig. 2(c) yet stable association is maintained. This
is because our association module comprehensively consid-
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Figure 3. Visualization of CoopTrack’s tracking results on the V2X-Seq Dataset. The two columns display two different sequences
from the validation split of the dataset, with four rows representing consecutive time steps. Each subfigure is divided into three parts: the
top-left shows results from the vehicle perspective, the bottom-left shows results from the roadside perspective, and the right side presents
the Bird’s Eye View (BEV) visualization. In the forward-looking perspective, 3D bounding boxes are color-coded by object category:
orange for vehicles, red for cyclists, and blue for pedestrians. In the BEV, the LIDAR point cloud is visualized for better presentation. For
bounding boxes, we use green to represent the ground truth, while the colors of tracking results are randomly selected from a pool of colors
based on their IDs, ensuring that each object maintains a consistent color over time.



ers multi-dimensional instance features and relative posi-
tional relationships, thereby providing more reliable infor-
mation for downstream aggregation module.

D.2. Tracking Results

As illustrated in Fig. 3, we visualize the tracking results of
our proposed CoopTrack on two representative sequences
from V2X-Seq [16], aiming to intuitively demonstrate the
superiority of our approach. Each subfigure comprises three
components: the vehicle-side input image positioned at the
top-left, the roadside input image at the bottom-left, and the
tracking results in the BEV view on the right. In the images,
colors correspond to object categories: orange denotes ve-
hicles, red denotes cyclists, and blue denotes pedestrians.
In the BEV view, green bounding boxes represent ground
truth, while colored boxes show tracking results with colors
assigned by IDs to demonstrate temporal consistency. In the
two sequences provided, we can observe that, thanks to the
cooperative information from the roadside, the ego-vehicle
can continuously track instances behind and to the sides of
it, achieving comprehensive perception results. This high-
lights the significant advantage of cooperative perception
over single-vehicle perception. Furthermore, despite re-
lying solely on images and lacking depth information in-
put, CoopTrack has also achieved relatively precise local-
ization, demonstrating the accurate tracking capability of
our method in complex traffic scenarios.
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