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Supplementary Material

We strongly recommend that readers watch the video in our supplementary materials, which include more audio
and video examples to get a better understanding and experience. In the following supplementary material, we provide
more details about the training configurations and the construction and information of our dataset in Sec. A. In Sec. B, we
present additional module settings along with some experimental results and analyses. In Sec. C, we showcase the qualitative
results of Lyra.

A. Training Configuration and Data
A.1. Detailed Training Configuration
Stage-1: Speech Alignment. In this stage, we only train the parameters of the speech projector for speech-language pre-
alignment with the LibriSpeech [48] and Common Voice Corpus [63] datasets, with about 1.0M data samples.

Stage-2: Joint Text-Image-Speech Training. Based on the Mini-Gemini [34] SFT data, we assemble and construct a unified
dataset with 1.5M samples for the image-text-speech joint training. We use the ChatTTS [1] model to convert high-quality
SFT data from text instructions into speech instructions. The multi-modal dataset, i.e., Lyra-MultiModal-1.5M, includes not
only single-turn instructions but also multi-turn instructions.

Stage-3: Long Speech SFT. To enable the model to integrate the long speech capability, we construct the first long-speech
SFT dataset, called Lyra-LongSpeech-12K. Details can be found in Sec. 3.5 of the main paper. To ensure more robust
performance, the dataset covers a wide range of topics, including humanities, social sciences, technology, education, and
more. At this stage, we train both the speech module and the whole LLM module.

Stage-4: Streaming Text-Speech Generation. During the speech generation stage, we only train the speech generator. To
better align the speech generator with the text decoder, we exclusively use text-speech modality QA pairs in our dataset. We
filtered and selected a portion of suitable data from the datasets in our Stage-1, Stage-2, and Stage-3 for speech generation,
resulting in a dataset of approximately 227K samples.
Detailed training settings are further explicated in Table 7.

Settings Stage-1 Stage-2 Stage-3 Stage-4

Sp
ee

ch Audio Length < 30s < 30s < 2500s, 30s clips < 30s
# Tokens 300 300 Max 25, 000 300

D
at

a Dataset LibriSpeech + CommonVoice Lyra-MultiModal-1.5M Lyra-LongSpeech-12K Filter from Stage-1, 2, 3
# Samples 1.2M 1.5M 12K 227K

Tr
ai

ni
ng

Trainable Projector Projector + LLM Projector + LLM Speech Generator
Batch Size 256 128 16 32
Learning rate 1× 10−3 2× 10−4 2× 10−4 2× 10−4

Epoch 1 1 3 1

Table 7. Detailed training settings of Lyra.

A.2. Data Collection and Curation
To ensure the data quality and training efficiency, we consider the following aspects while generating speech data for three
modalities of joint training.

Generate multi-modal interleave data. To ensure models’ ability to process interleaved multi-modal data, we randomly
select one round from multi-round conversations and convert its text into speech, while keeping the remaining rounds in text
format. This guarantees that our SFT data preserves its multi-modal interleaved structure.

Oral Expression. Certain types of text are not well-suited for direct conversion using TTS technology. In these cases, we
ensure the content is rewritten in a more conversational, oral form. For example, we rephrase “A:” as “Option A is” to
enhance clarity and naturalness.



Speaker Diversity. To maintain diversity in our generated speech, we randomly select speakers with varying timbres and
pitches for each instance. Since ChatTTS [1] obtains different speaker characteristics through various Gaussian sampling, it
exhibits great diversity and robustness. During our generation process, we switch to a new set of ChatTTS random samples
every 128 instructions.

Be Aware of the OCR Text. In real-world applications, a MLLM retrieves text by calling the OCR interface, such as
TextVQA. Many OCR tokens, such as ‘G0’ and ‘EF’, lack clear meaning and are not suitable for verbal expression as speech
input. Following this practice, we do not convert OCR text into speech.
Here, we list some training prompts and evaluation examples of our data in Fig. 7.

B. More Component-Wise Details & Analysis

B.1. Latent Multi-Modality Regularizer

Ablation of hyper-parameter λ in LCMR. In Table 9, we present the ablation study on the hyper-parameter λ. It can be
observed that the performance is optimal when λ is set to 0.5, which consistently surpasses the results obtained without the
application of LCMR, i.e., λ = 0, across all speech-image benchmarks. Additionally, we note that setting this parameter too
high can be detrimental to the overall performance.

Analysis Results on Speech/Audio Benchmarks. In Table 11, we have conducted evaluations on several renowned speech
benchmarks, namely LibriSpeech [48] and AIR-Bench [72], where Lyra has achieved state-of-the-art results in speech capa-
bilities. It surpasses all existing SLMs and omni models.

B.2. Latent Multi-Modality Extractor

Latent multi-modality extractor training performance. Qwen2-VL is exceptionally powerful, with the quantity and
quality of its training data far surpassing those of public datasets and open-source models. As a result, most approaches
to continual learning based on Qwen2-VL tend to result in performance degradation. Therefore, to evaluate the performance
of our extractor module, we opt to train a new model from scratch. The results are shown in Table 8. Under the same training
settings, models using latent multi-modality extractor achieve faster training speeds, with a maximum acceleration of nearly
50%. Additionally, they maintain or even improve average performance by up to 1% across multiple benchmarks. This
series of experiments demonstrates the effectiveness of our extractor. Visualization of the latent multi-modality extractor in
image modality is shown in Fig. 10. From it, the tokens retained in different blocks are all related to the user’s instruction.
Additionally, for different questions, the token regions in the image most relevant to the question are preserved. This result
is consistent with the video and speech modalities discussed in our main paper.

Compared with FastV [8]. LMME can progressively discard unimportant context tokens across multiple layers dynamically,
whereas FastV is quite rigid, discarding them all at once after a constant layer. Moreover, LMME applies to a wider range of
modalities, such as audio and long-speech cases, not just the vision modality. The detailed comparison is shown in Table 10.

Prefill time, TPS, memory, TFLOPs comparison. In Table 12, we vary the token length, ranging from 211 to 217 (under
a long-context case). We denote LMME(n, ρ) as splitting the LLM into n blocks, with each block retaining the top ρ
proportion of the most important tokens. We compare three models: the baseline, LMME(4, 0.8), and LMME(4, 0.7). The
key metrics examined include Prefill Time, tokens-per-second (TPS), and memory usage on the A100 GPUs. Under the
baseline model, multimodal content exceeding 215 tokens results in out-of-memory (OOM) errors. In contrast, our models
LMME(4, 0.8) and LMME(4, 0.7) still have room for 217 tokens, consuming over 50% less memory. Additionally, the Prefill
Time is significantly shorter than the baseline model (by 100%), and the token generation speed is also notably faster (by
50%). Additionally, FLOPs reduce about 50% in most cases.

LMME training time comparison on multi-modality datasets. In Table 14, we primarily examine the improvement in
training speed. We evaluate it using our proposed Lyra SFT and long-speech SFT dataset, which contains 1.5M samples and
12K samples, respectively. From the table, our LMME can reduce training time by more than 50% compared to the original.
Since the context in the long-speech dataset is generally longer than it is in the 1.5M dataset, the acceleration effect becomes
even more pronounced.



Method LLM Vision Data Time TextVQA MME MM-Vet MMB-EN SEED MMMU Avg. Rate

Baseline Vicuna-7B CLIP+Conv Lyra-MM-1.5M 65h 68.4 1865 41.3 65.8 68.1 36.8 100.0%
+ Extractor Vicuna-7B CLIP+Conv Lyra-MM-1.5M 35h(-46%) 69.9 1899 44.9 66.7 67.5 35.3 101.5%(+1.5%)

Baseline Qwen2-7B SigLIP LLaVA-665K 18h 69.7 1974 39.4 76.7 74.2 40.8 100.0%
+ Extractor Qwen2-7B SigLIP LLaVA-665K 14h(-22%) 69.1 2005 38.6 76.9 73.5 40.6 99.6% (-0.4%)

Baseline Qwen2-7B SigLIP Lyra-MM-1.5M 51h 71.9 2030 51.0 78.1 74.5 40.2 100.0%
+ Extractor Qwen2-7B SigLIP Lyra-MM-1.5M 35h(-31%) 71.8 2007 50.6 77.7 73.7 42.1 100.1%(+0.1%)

Table 8. Latent multi-modality extractor training performance. The training time is reduced by an average of one-third, while the
average performance does not degrade and even improves by 0.4%.

Hyper-parameter λ TextVQAS MM-VetS ChartQAS AI2DS

Baseline (λ = 0.0) 79.0% 59.5% 58.8% 64.7%
Lyra (LCMR, λ = 0.3) 79.8% 60.1% 59.4% 65.8%
Lyra (LCMR, λ = 0.5) 80.0%(+1.0%) 60.5%(+1.0%) 60.4%(+1.6%) 66.4%(+1.7%)
Lyra (LCMR, λ = 1.0) 78.8% 58.9% 57.2% 63.8%

Table 9. Ablation of hyper-parameter λ in LCMR. BenchS in-
dicates that it uses speech instruction as the input.

Methods Comparison FLOPS TextVQA MMBench MME

Baseline 100% 82.6 79.0 2326
FastV (K=2, R=0.3) 55% 80.1 76.3 2155
LMME (n=4, ρ=0.6) 55% 80.2(+0.1%) 77.8(+1.6%) 2283(+128)
FastV (K=2, R=0.3) 70% 81.4 78.0 2280
LMME (n=4, ρ=0.8) 65% 82.0(+0.6%) 78.8(+0.8%) 2286(+6)

Table 10. Comparison of FLOPs and performances with FastV.

Model
ASR on LibriSpeech↓ AIR-Bench↑ [72]

test-c test-o Chat-speech

SpeechGPT [78] - - 1.57
Whisper-small [51] 4.4 10.1 -
SALMONN [56] 2.1 4.9 6.16
Qwen2-Audio [11] 1.6 3.6 7.18

LLaMA-Omni [16] - - 5.22
Mini-Omni2 [69] 4.8 9.8 3.58
VITA-1.5 [19] 3.3 7.2 4.83
IXC2.5-OmniLive [79] 2.5 5.7 1.60

Lyra-Base 1.8 3.8 7.51

Table 11. Analysis Results on Speech/Audio Benchmarks.

Metric # (Tokens) 211 212 213 214 215 216 217

Prefill(s)↓
Baseline 0.19 0.33 0.65 1.47 2.99 OOM OOM
LMME(4, 0.8) 0.17 0.24 0.44 0.76 1.60 4.24 10.2
LMME(4, 0.7) 0.16 0.21 0.37 0.59 1.23 3.05 7.75

TPS↑
Baseline 32.6 30.8 27.3 25.3 16.6 OOM OOM
LMME(4, 0.8) 32.7 31.5 31.8 28.6 22.7 14.1 8.37
LMME(4, 0.7) 33.8 33.3 32.5 30.1 25.3 16.6 10.1

Memory↓
Baseline 20G 23G 30G 41G 60G OOM OOM
LMME(4, 0.8) 17G 18G 19G 21G 24G 33G 49G
LMME(4, 0.7) 17G 18G 19G 21G 24G 33G 49G

TFLOPs↓
Baseline 17.5 37.3 74.3 156 287 OOM OOM
LMME(4, 0.8) 8.63 19.1 47.6 96.2 183 393 785
LMME(4, 0.7) 7.42 16.4 33.8 84.4 157 337 674

Table 12. Prefill time, TPS, memory, TFLOPs comparison.

Data Effectiveness TextVQAS DocVQAS ChartQAS AI2DS

InterOmni (27M data) 69.0% 80.0% 56.1% 54.0%
Lyra (Lyra-HD-0.7M) 79.0% 82.0% 56.5% 64.1%
Lyra (Lyra-HD-1.5M) 80.0%(+1.0%) 84.6%(+2.6%) 60.4%(+3.9%) 66.4%(+2.3%)

Table 13. Validation of the proposed dataset effectiveness.

Data Type Baseline LMME(4, 0.9) LMME(4, 0.8) LMME(4, 0.7)

Lyra-MM-1.5M 66h 58h (-13%) 47h (-29%) 41h (-38%)
Lyra-LongSpeech-12K 9.6h 7.0h (-27%) 5.7h (-40%) 4.5h (-54%)

Table 14. LMME training time comparison.

B.3. Long Speech Capability Integration
Additionally, we introduce prompts related to the long speech capability. The detailed prompts are shown in Fig. 8. The
first is the GPT-4o-based prompt used to generate Q&A during the long speech data collection process. The second is the
inference prompt we used to apply the long-speech Lyra model on the VideoMME benchmark. For detailed results and
analysis, refer to Sec. 3.5 and the long-speech capability integration part in Sec. 4.3.

B.4. Sound Capability Integration

For the sound modality, due to the lack of many pretrained models, we primarily follow ImageBind[21] as the sound
encoder. ImageBind processes sound, text, and image modalities using a training approach similar to CLIP [50], ultimately
encoding them into just one single token. This approach is not particularly generalizable. During the sound SFT process, our
model based on LLaMA3 [15] is trained on the AudioCaps [29] dataset, which contains a total of 46K training samples. The
quantitative performance of our model on the test set is shown in Table 15.



Lyra Data Examples

Training conversations:
human: <image>\nWhat are the two people holding?\nAnswer the question using a single word or phrase.
GPT: Umbrella.
human: What is the person with the Red Hat doing?
GPT: Taking pictures.
human: <speech>
GPT: Blanket.

Evaluation cases:

human: <image>\nReference OCR token: DAKOTA, DIGITAL, Single-Use, Camera, Pire, digitat\n<speech>

Figure 7. Lyra training and evaluation data examples.

Long Speech Question-Answer Generation Prompt Example

Task:
You will be provided with a transcript from an audio or video recording. Your task is to generate question-answer pairs based on the content
of the transcript.
Guidelines for Question-Answer Pair Generation:
- The first question should be about summarizing the content of this recording.
- Carefully read the transcript provided and base all questions and answers strictly on the content within.
- Ensure that each question is directly related to specific details in the transcript, such as events, facts, or points made by the speaker.
- Provide clear, concise, and specific questions, along with accurate answers derived from the transcript.
- Do not introduce any new information that isn’t in the transcript. If the speaker does not introduce themselves, refer to them as “Speaker”
or “Narrator”.
- Avoid generic or overly broad questions; aim for a range of question types (e.g., factual, inferential, explanation-based).
- Generate five question-answer pairs.

Output Format:
- Your output should be structured as a JSON object.
- Each question-answer pair should be formatted as:
‘‘‘json
{

[
{"Question": <question-1>, "Answer": <answer-1>},
{"Question": <question-2>, "Answer": <answer-2>},
...

]
}

‘‘‘

Long Speech VideoMME Evaluation Prompt Example

Based on the context, determine if it provides enough information to answer the question:
<question> with the provided choices <option-A>, <option-B>, <option-C>, <option-D>.
Do not introduce any information not found in the context.
- If the context is sufficient to answer the question, respond “yes” and answer with the option’s letter from the given choices directly.
- If the context does not contain enough information to answer the question, respond “no”.

Figure 8. Long speech related prompt examples.

Regarding this dataset, as the authors of AudioCaps [29] have noted, “Even to humans, recognizing the true identity of
a sound can be ambiguous.” Moreover, LLM-based multimodal models tend to produce more detailed descriptions, while
metrics like SPICE [3] and CIDEr [62] are outdated and fail to effectively reflect the most suitable results. Even under such
circumstances, our Lyra, trained on just 46K samples for the sound modality, outperforms previous sound models. Some
qualitative results are shown in Fig. 9.



Water gurgling and splashing.

10s sound (only the sound input)

Lyra:

User:

A small engine is running and a man is talking in the background.

10s sound (only the sound input)

Lyra:

User:

Figure 9. Sound capability qualitative results.

Keep tokens of Block #4 

:.

Input: Single Image User: I want to go to Sunset Blvd, what should I do? User: I want to go to Ventura, what should I do?

Keep tokens of Block #6 Keep tokens of Block #4 Keep tokens of Block #6 

To go to Sunset Blvd, you should follow the right lane and take the exit towards Sunset Blvd. To go to Ventura, you should follow the left lane and continue straight

Input: 8-frame Video (for better visualization) User: What temperature and time are needed to bake the bacon?

4.8% tokens 6.9% tokens 16.8% tokens 7.8% tokens

10.5% tokens 14.4% tokens 27.5% tokens 5.0% tokens

Org. Wave (100%)

Keep Wave (25%)

Norm. Attn. Score

Input: 20-min Audio User: Did anyone in the above content 
celebrate a birthday? And how old?

Input: 20-min Audio

"Hurricane Helen rising more 
than  150 lives now lost search 
teams now …"

"death toll from Hurricane 
Helen Rising more than 150 lives 
now lost hundreds are still … "

User: How many casualties 
did Hurricane Helen cause?

“In tonight former President 
Jimmy Carter turning 100, watching 
the flyover for his birthday … "

"Jimmy Carter at his white cap 
what he witnessed on this his 
100th birthday…"

Figure 10. Visualization of latent multi-modality extractor in the image (upper) and video (bottom) modality.

B.5. Streaming Text-Speech Generation
For the speech-text streaming speech generation component, we have adopted two approaches: non-autoregressive (NAR)
and autoregressive (AR). The non-autoregressive mode is inspired by LLaMA-Omni [16], offering lower latency (A lag of
about 0.5 seconds.), but with a slight compromise in sound quality. The autoregressive mode, on the other hand, is based on
Mini-Omni [84], providing better control over the characteristics of the generated speech. We support both English and
Chinese speech output in this mode.

Speech Discretization. To handle NAR speech responses, we discretize the audio into discrete units with the following
steps: 1). Continuous representations are extracted using the HuBERT model [25]. 2). These representations are clustered
into discrete indices via the K-means algorithm. 3). Consecutive repeated indices are merged to form a sequence of discrete
units, which can be converted back to waveforms using a vocoder [49]. To handle AR speech responses, we discretize the
audio into discrete units by lightweight SNAC [55] encoder. It uses the downsample factors (or strides) of [8, 4, 2, 1]. Each
codebook holds 4096 entries (12-bit).

Speech Decoder for Streaming Generation. A streaming speech decoder is introduced after the LLM to enable simultane-
ous generation of text and speech: For the NAR mode, to ensure the overall structure remains consistent with the LLM, the
decoder is built using two transformer layers similar to Qwen2-VL [64]. Similar to LLaMA-Omni, it processes the hidden
states from the LLM and generates discrete speech units in a NAR manner [41, 81]. For upsampling, the text hidden states
from the LLM are upsampled to match the speech sequence’s length. These upsampled representations are processed by the
speech decoder to produce output features for the discrete speech units. Due to the increased complexity of encoding in AR
mode, we employ 4 to 6 transformer layers to process the AR encoding.

Alignment and Training. For the NAR mode, following LLaMA-Omni, Connectionist Temporal Classification (CTC) [24]
is used to align the decoder’s output with the discrete speech units. During training, the model learns to match the output
features to the target speech units by minimizing the CTC loss. During inference, the most likely sequence is selected,
converted into discrete units, and passed through the vocoder to generate audio. For the audio and text tokens generated
simultaneously, the negative log-likelihood loss is adapted in the AR mode training process.



AT [43] BART [22] PairMix [30] CoDi [58] Lyra-Base

16.8 17.7 18.1 17.1 19.5

Table 15. Sound SPICE performance comparison.

Eval/Train ChatTTS Edge-TTS

ChatTTS 80.0 79.5
Edge-TTS 79.7 78.3

(a) TextVQAS

Eval/Train ChatTTS

ChatTTS 84.6
Intern-O 82.3

(b) DocVQAS

Eval/Train ChatTTS

ChatTTS 60.4
Intern-O 58.3

(c) ChartQAS

Table 16. Different TTS training and evaluation.

Listing 1. Sample Random Function in ChatTTS (Pytorch)

1 def sample_random(self) -> torch.Tensor:
2 spk = (
3 torch.randn(self.dim, device=self.std.device, dtype=self.std.dtype)
4 .mul_(self.std)
5 .add_(self.mean)
6 )
7 return spk

B.6. TTS Methods Ablation Study
In this subsection, we briefly compare the impact of different TTS (text-to-speech) methods on the generalization and robust-
ness of speech instruction (across different domains). We primarily used two TTS methods: ChatTTS [1] and Edge-TTS [44].
ChatTTS employs Gaussian sampling to simulate different speakers (As shown in Listing 1), while Edge-TTS randomly se-
lects from a fixed set of 41 speakers. ChatTTS is likely to be more diverse. We trained models using instruction data
generated by these TTS methods and evaluated TextVQA speech instructions generated by different TTS methods. Detailed
results can be found in Table 15a. Models trained with speech generated by ChatTTS demonstrated better generalization due
to its diversity.

Similar results were observed when compared with speech instructions generated by Intern-Omni [47]. Because we
cannot access their training speech instruction data; they only provided the evaluation speech instruction data of DocVQA
and ChartQA. Specific results are provided in Table 15b and 15c. While models perform better when trained and evaluated
on instructions generated by the same system, the experiments overall demonstrate that instructions generated by ChatTTS
are more robust compared to the other two methods.

C. Qualitative Results
C.1. Examples of Images and Videos
In Fig. 11, we present additional interactions with Lyra, showcasing the model’s adeptness in knowledge-based perception
and reasoning for both images and videos. In various complex scenarios, such as recognition of complex PC backgrounds,
understanding of game interfaces, and analyzing football match videos with significant differences between frames, Lyra
demonstrates superior understanding and reasoning cognitive outcomes.

C.2. Examples of Long Speeches
In the main paper experimental section, Fig. 6a shows that existing Speech Language Models (SLMs) fail when processing
audio longer than 450 seconds (about seven minutes): the output becomes nonsensical with extensive repetition. In this part,
we demonstrate Lyra’s ability to handle long audio inputs. In Fig. 12, 13, 14, and 15 we demonstrate Lyra’s capability to
process long-form speech (best view the following part together with the video in our supplementary materials). Lyra
effectively extracts the information that users need from extended speech contents. It excels at capturing both the details and
the overall structure of long speeches. In news scenarios (Fig. 12, with frequent topic switches), it accurately identifies the
focused information and responds exceptionally well.

For more complex tasks, as shown in Fig. 13, such as scenarios with visual ambiguity, our model leverages long-form
speech and keyframes from videos to provide more accurate results compared to a powerful VLM like Qwen2-VL that rely
solely on visual information. In Fig. 14, our model demonstrates its ability to process daily lectures, offering significant ad-
vantages for educational-related applications. Lyra can handle speech content durations exceeding two hours, which enables
intelligent models to tackle more complex multi-modal tasks. In Fig. 15, For tasks with longer temporal sequences and higher
complexity, Lyra can also understand them and provide subjectively reasonable answers to the questions.



Input: Single Image

User: Please describe this video.

The video showcases a series of scenes from a video game, including a woman in a bikini walking on the beach, a man in 
a car crashing into a store, and a woman being chased by a group of men on motorcycles. The video also features a logo 
for the game “Grand Theft Auto VI” and a warning that the game may contain content inappropriate for children. The 
scenes are set in a city with palm trees and a beach, and the game appears to be a crime-themed action game.

How many APP icons are in this image?
    List their names and the corresponding functions in two columns.

Name Function

Recycle Bin A container for temporary….

Zoom A video conferencing …

WinSCP A secure file transfer …

CoolTerm A terminal emulator …

Tabby Terminal A terminal emulator …

Google Chrome A web browser for accessing …

VLC media player A multimedia player …

YouTube Music A music streaming

Slack A collaboration platform …

Adobe Acrobat A PDF document viewer …

Lyra-Base-9B

There are 10 APP icons visible

Name Function

Recycle Bin A place to store files ….

Zoom A tool for magnifying the screen

Windows The operating system …

Google Chrome A web browser for browsing …

Google A search engine for finding …

Adobe Acrobat A program for viewing …

YouTube A video-sharing platform …

Slack An app designed for teams …

Discord A voice and text chat app …

Tabs A browser extension…

ARC media player A media player for playing …

Google Drive A cloud storage service …

Mini-Gemini-HD-34B

There are 12 APP icons

GT

Name

Recycle Bin

Zoom

WinSCP

Coolcut

Tabby Terminal

Google Chrome

VLC media player

YouTube Music

Slack

Adobe Acrobat

Discord

11 APP icons 

Input: 2 min Video

User: Provide a detail commentary for this football match clip.

The soccer match is between England and Iran, and the game is currently at the 34th minute. The teams are playing on a 
field with a large crowd watching. The players are actively engaged in the game, with one player from England scoring a 
goal. The goalkeeper from Iran is unable to catch the ball, and the crowd cheers for the goal. The match is being 
broadcasted by FIFA.

Input: 15 sec Video

Figure 11. Image-text and video-text qualitative results of Lyra.



The recording covers multiple significant events and news stories. 
• It begins with Iran launching over 200 ballistic missiles at Israel in response to the killing of Hezbollah leader in Beirut, 

causing air raid sirens and explosions across Israel, with Israeli defenses and US military intercepting many missiles. 
• The situation raises fears of a wider regional war, affecting the US presidential race with the vice-presidential debate 

looming. 
• Meanwhile, in the US, tens of thousands of dockworkers are on strike, threatening the national supply chain, while 

search efforts for victims of Hurricane Helene continue with over 150 deaths reported. 
• There are also developments in legal cases against attorney Shaun Diddie Combs and a manhunt for an escapee. 
• The recording also covers the passing of baseball great Pete Rose and actor John Amos, along with updates on 

President Jimmy Carter’s 100th birthday. 

User: Give me a summary about today’s news. 

User: Give me more information about the Hurricane Helene.

Hurricane Helene was a significant hurricane that struck the northeastern United States, particularly affecting areas 
such as New England and the Mid-Atlantic states. The hurricane made landfall on the coast of Maine and brought heavy 
rainfall, strong winds, and storm surges that caused extensive damage. The death toll from the hurricane rose to more 
than 150 lives, and search and rescue operations were ongoing as teams worked through the night to locate missing 
individuals. The disaster also caused significant destruction, with rescuers searching from structure to structure, 
including finding a couple who had been swept away by a wall of water. The search efforts were described as growing 
more desperate by the hour, with a focus on locating one man’s fiancée who was still missing.

Input: 20min 1s Audio 

Input: 20min 1s Audio 

Figure 12. Lyra long speech capability qualitative results for handling daily news.



Yes, there was an accident during the process. The rocket fell back to the ground after reaching a certain altitude.
     (Qwen2-VL)

User: Did any accidents happen during the video?

No accidents occurred during the entire process. The mission went smoothly, with the booster successfully returning to 
the launch site for a catch, and the ship achieving nominal orbit insertion.                                                                   (Lyra)

Input: 10min 20s Audio + Video 

User: Briefly describe the whole process.

User: Why is the day an important day in the history? 

The day is significant in engineering history because it marks the successful retrieval of the Super Heavy booster back at 
the launch tower, a first-ever attempt which was accomplished with precision and skill. This event is described as a day 
for the engineering history books, highlighting its rarity and the level of achievement. The successful catch of the booster 
demonstrates advancements in technology and engineering capabilities, providing a milestone that will be remembered 
in the engineering field.

Input: 10min 20s Audio + Video 

Input: 10min 20s Audio + Video 

1. The countdown and launch phase; 
3. The booster’s return to the launch site;

2. The hot staging process; 
4. The ship’s orbit insertion.This includes:

Figure 13. More long speech examples results. Lyra achieves more accurate omni-cognition compared to naive VLMs like Qwen2-VL.



User: Give me more other activation functions not mentioned 
in today’s lecture, and give me the mathematical expression. 

Input: 18min 39s Audio 

Leaky ReLU:    𝐦𝐚𝐱 𝟎, 𝒙 + 𝜶 𝐦𝐢𝐧(𝟎, 𝒙)

According to the video lecture, neural networks have shifted from using sigmoid functions, which compress inputs to 
values between 0 and 1, to the simpler ReLU function, which outputs either 0 or the input value itself, offering more 
efficient neuron activation.
Other activation functions that have been used or proposed include Leaky ReLU, which allows a small, non-zero gradient 
when the neuron is not activated, and ELU (Exponential Linear Unit), which uses an exponential function to provide 
negative values for inputs below zero. These functions help introduce non-linearity into the network, enabling it to learn 
more complex patterns.

User: What is the topic of today’s discussion?Input: 2h 27min 55s Audio 

• Today’s discussion is about the evolution and formation of stars within the universe.
• Initially, the speaker discusses the shift in understanding from stars being the primary focus of astronomy to

recognizing the significant roles played by dark energy and dark matter.
• The discussion covers the origins of stars, the processes involved in their formation, and the various

environments in which they are born.
• The speaker explains how cold molecular clouds and the interstellar medium play crucial roles in condensing into

stars.
• The talk also delves into the lifecycle of stars, including their eventual transformation into planetary nebulae and

the role of magnetic fields in their evolution.
• Furthermore, the speaker highlights the challenges and advancements in observing and studying these phenomena,

including the use of radio and millimeter telescopes.
• The discussion concludes with insights into the formation of star clusters and the dynamics of stars moving through

the galaxy.

Figure 14. More examples of Lyra with hour-long lectures (more than two hours).



The speaker can be made by:
1. Choosing a wooden cabinet and purchasing scrap wood for less than a dollar. After returning to the wood mill, better 

quality wood is bought for around two dollars more. Carpentry tools are purchased at a bargain price, including a 
handsaw, hole-making saw, wood glue, and sandpapers of different grits. 

2. The wood is marked, cut, and sanded, then drilled for speakers. The pieces are joined with wood glue and gaps filled 
with a mixture of wood dust and glue. The LED notification ring is made from a silicon mold and epoxy resin. 

3. The electronics are built using a Raspberry Pi Zero W, a PCB, and various components, including a power bank and 
audio amplification. The circuit is soldered, and the microphone, speakers, battery, and Raspberry Pi are attached. 
Alexa is installed by creating an account on the Amazon Developer page, and the Google Assistant is enabled through 
the Google Developer page. 

4. The speaker is assembled inside a prepared cabinet, and the system is tested with Alexa and Google Home 
functionalities.

User: What steps can be taken to make the smart speaker?

User: What do you think is the most error-prone step?

The most error-prone step in the process described in the transcript is likely the soldering of the components onto the 
PCB. This step is described as challenging, especially when dealing with SMD (Surface Mount Device) components. 
Soldering is a delicate process that requires precision and attention to detail to ensure that each component is correctly 
placed and connected to avoid shorts or loose connections. The speaker notes that they will consider creating a dedicated 
video on SMD soldering, indicating that it’s an area that might need extra care and practice to avoid mistakes.

User: What are the advantages of the speaker mentioned?

The speaker has several advantages:
• It is a single device that combines the functionalities of both Amazon Alexa and Google Home, allowing users to 

control multiple smart home devices and functions. 
• It has built-in battery power, which means it can be used anywhere without needing a power supply, unlike the 

traditional Amazon Echo or Google Home devices. 
• Additionally, it has audio in and out functionality, which was achieved through a custom circuit board designed to 

work with the Raspberry Pi Zero W. 
• The speaker is also aesthetically pleasing, with a wooden cabinet that was crafted by the speaker himself, including 

an LED notification ring. 
• building a smart speaker costs a low budget of thirty dollars, including sourcing materials like wood and tools.

Input: 10min 25s Audio 

Input: 10min 25s Audio 

Input: 10min 25s Audio 

Figure 15. More results from long speech examples: Lyra can subjectively answer questions about complex steps.
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