
RoboTron-Nav: A Unified Framework for Embodied Navigation Integrating
Perception, Planning, and Prediction

Supplementary Material

6. Implementation Details
In this section, we elaborate on the more detailed imple-
mentations for RoboTron-Nav in Sec. 3.

6.1. Model
6.1.1. Vison Encoder
Following the settings in previous works [19, 32], we input
RGB images from both the head perspective Iheadt and the
wrist perspective Iwrist

t into ViT [22] to obtain the 2D fea-
tures Xhead

t and Xwrist
t . Both Xhead

t and Xwrist
t are then

fed into UVFormer [19] to construct multi-view 3D features
UVt.

We adopt UVFormer [19] as our 3D occupancy predic-
tor. As shown in Eq. (2), UVFormer takes the image fea-
tures Xt, camera parameters Cam, and a set of learnable
UniView queries Q as input, and outputs a unified view
representation UVt. The query set Q = {Pos,Emb} com-
prises positional encodings Pos ∈ RL×B×3P and learn-
able embeddings Emb ∈ RL×B×C . Here, L and B (both
set to 20) specify the 3D grid’s spatial layout within the
robot’s workspace, and P is the number of uniformly sam-
pled points along the vertical axis of each pillar cell. Each
pillar cell covers 0.052 square meters on the ground and
spans 0.5 meters in height. Embl,b ∈ RC encodes features
for each pillar cell. The camera parameters Cam corre-
spond to N different viewpoints. The unified view repre-
sentation UVt ∈ RL×B×C integrates information from the
entire L×B×P 3D grid and serves as the basis for down-
stream occupancy prediction.

In the navigation task, we adhere to the settings in [19,
32], utilizing only the wrist perspective Xwrist

t as the 2D
feature Xt to broaden the exploration view. Conversely, in
the EQA task, we use the head perspective Xhead

t for the
2D feature Xt to maintain a first-person perspective, as the
EQA pairs are generated from this perspective.

6.1.2. LLM
We utilize MPT1 as our LLM, freezing the self-attention
layers during training while fine-tuning the cross-attention
layers. For the action head, we employ a multi-layer per-
ceptron to map the final hidden states produced by the LLM
from the c-dimensional space to the action space of the
CHORES-S ObjectNav benchmark [10]. For the answer
head (i.e., LLM head), we apply the argmax operation on
the logits output by the LLM to decode the answer.

1https : / / huggingface . co / mosaicml / mpt - 1b -
redpajama-200b-dolly

6.2. Training Objective
To achieve Multitask Collaboration, we design a uni-
fied loss function that jointly optimizes navigation actions,
question answering, and 3D occupancy through modality-
specific components:

L = Laction + Lanswer + λoccLocc, (7)

where Laction, Lanswer, and Locc denote navigation action
prediction loss, embodied question answering loss, and 3D
occupancy prediction loss respectively. The term λocc is the
weight coefficient for the occupancy loss.
Action prediction Loss. We utilize behavior cloning to
train the navigation model. Given an expert trajectory
τ = (â0, · · · , âT ), we use the cross-entropy loss for action
prediction. The loss for the trajectory is as follows:

Laction =

T∑
t=1

(CE(at, ât)) , (8)

where at denotes the predicted action and ât the ground-
truth (GT) demonstration at timestep t.
Question answering loss. Given the GT answer y1:K of the
input question with the length of K, we optimize the gen-
erated answer token probabilities by a conventional cross-
entropy loss:

Lanswer = −
K∑

k=1

log (p (yk | y1:k−1)) . (9)

Occupancy loss. Following the approach used in previ-
ous works [19, 32], we utilize a standard cross-entropy loss
function, denoted as Locc, on the generated 3D volume.

7. Experimental Settings
7.1. Dataset and Metrics
7.1.1. Dataset
We selected the CHORES-S benchmark for its complex
indoor environments (10K rooms) and diverse object cat-
egories (15 types), allowing for comprehensive navigation
testing. The CHORES-S ObjectNav benchmark [10]
includes 15 object categories and annotates 99k trajecto-
ries within 10k training houses, among 5M expert trajec-
tory frames in the AI2-THOR simulated environment [16].
For the CHORES-S ObjectNav benchmark [10], we ex-
tend each trajectory with EQA pairs. As a result, we collect

https://huggingface.co/mosaicml/mpt-1b-redpajama-200b-dolly
https://huggingface.co/mosaicml/mpt-1b-redpajama-200b-dolly


99k EQA pairs as the corresponding EQA dataset for joint
training. The CHORESNAV-S ObjectNavRoom bench-
mark [10] is similar to the ObjectNav benchmark but in-
volves smaller trajectories. This benchmark includes 15
object categories and annotates 21k trajectories within 2k
training houses out of 1M expert trajectory frames. Addi-
tionally, the ObjectNavRoom benchmark uses more diverse
instructions, describing both the object’s category and its
room type simultaneously, such as “Find a vase in the liv-
ing room.” In contrast, the ObjectNav benchmark specifies
only the object’s category, such as “Find a vase.” Similarly,
we extend each trajectory in the ObjectNavRoom bench-
mark with EQA pairs, collecting 21k EQA pairs as the cor-
responding EQA dataset for ablation studies.

The action space of the ObjectNav and ObjectNav-
Room benchmarks [10] includes 20 actions: Move Base
(±20 cm); Rotate Base (±6◦, ±30◦); Move Arm (x,
z) (±2 cm, ±10 cm); Rotate Grasper (±10◦); pickup;
dropoff; done with subtask; and terminate.

7.1.2. Metrics
Success rate (SR) is defined as the proportion of episodes
deemed successful, which occurs when the agent executes
the “end” action and the distance to the target, any instance
of the category, is within a specified threshold (e.g., 2m).
Episode-length weighted success (SEL) [8] is a metric
used to evaluate the efficiency of an agent’s navigation. It
compares the shortest possible path to the agent’s actual
path, calculated as:

1

N

N∑
i=1

Si
wi

max (wi, ei)
, (10)

where wi represents the shortest possible episode length to
the target object, ei is the episode length produced by the
agent, and Si is a binary indicator that denotes success for
episode i. Percentage of rooms visited (%Rooms) is a
metric that measures the proportion of distinct rooms an
agent successfully visits during navigation relative to the
total number of rooms available in the environment. This
metric reflects the agent’s exploratory capability and effi-
ciency in covering different areas within a given space.

7.2. Traing Strategy
Here, we describe the model hyper-parameters and training
details of RoboTron-Nav.

7.2.1. Model Hyper-parameters
In the visual encoder, the number of image patches nimg
is set to 64, the number of multi-view vision tokens nuv is
400, and the feature dimension c is 1024. In the adaptive
3D-aware history sampling strategy, the window size W is
60, the proximity threshold ϵ is 0.1, and the number of his-
torical frames nhis is 60. For the MaxPool operator, we

use an adaptive max pooling function to reduce the number
of tokens in the historical features G[i].v to 1. In the LLM,
the number of language tokens nL corresponds to the length
of input instructions and questions, respectively.

7.2.2. Training Details
We train the entire model with the AdamW optimizer using
8 A100 GPUs (80 GB memory per GPU), with a batch size
of 48 per GPU, resulting in a total batch size of 384 for 5
epochs. A cosine learning rate strategy is employed, where
the learning rate is initially set to 1 × 10−4 and finally de-
cays to 1× 10−6. We evaluate checkpoints every 0.5 epoch
starting from the 3rd epoch and report the metrics for the
checkpoint with the highest SR on the evaluation split.

7.2.3. Training Efficiency and Convergence Stability
In terms of training efficiency, multitask training requires
approximately twice as much time as single-task training.
Additionally, both approaches demonstrate stable loss re-
duction and typically converge by the fifth epoch.

8. Qualitative Results
To visualize the effectiveness of our unified framework
for embodied navigation, we provide additional qualita-
tive results generated by our method alongside those of
SPOC [10]. As shown in Fig.6, when the agent is posi-
tioned close to the target, such as within the same room, our
RoboTron-Nav is capable of generating the shortest path
comparable to SPOC [10]. Both methods understand the
environment well, enabling efficient navigation under fa-
miliar conditions. However, when the agent needs to nav-
igate across greater distances, such as being situated in
different rooms from the target, significant differences in
their performance begin to emerge. As shown in Fig. 7,
SPOC [10] struggles by repeating paths, which reduces ef-
ficiency and increases the risk of looping or missing optimal
routes, lowering its success rate. In contrast, RoboTron-Nav
avoids revisiting areas, systematically explores new routes,
and adapts to changing environments, making it effective
for long-distance navigation and optimizing complex path-
ways.



SPOC
Instruction: Locate a chair.

SPOC RoboTron-Nav

Instruction: Find a toilet.

SPOC

Instruction: Find a laptop.

RoboTron-Nav

RoboTron-Nav

Figure 6. Qualitative comparison of trajectories generated by SPOC [10] and RoboTron-Nav in the same room.



Instruction: Find a laptop.
SPOC RoboTron-Nav

Instruction: Locate a chair.
SPOC

SPOC

Instruction: Locate a trash can.

RoboTron-Nav

RoboTron-Nav

Figure 7. Qualitative comparison of trajectories generated by SPOC [10] and RoboTron-Nav in different rooms.


	Implementation Details
	Model
	Vison Encoder
	LLM

	Training Objective

	Experimental Settings
	Dataset and Metrics
	Dataset
	Metrics

	Traing Strategy
	Model Hyper-parameters
	Training Details
	Training Efficiency and Convergence Stability


	Qualitative Results

