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Figure 6. More synthetic images from PSAQ-ViT, PSAQ-ViT V2,

and our SARDFQ.

1

2 from scipy.stats import multivariate_normal
3 import numpy as np
4

5 def Single_Gaussian():
6 mean = np.random.uniform(-5, 5, 2)
7 covariance = None
8 while True:
9 A = np.random.uniform(0, 1, (2, 2)) * 10

10 covariance = np.dot(A, A.T)
11 try:
12 eigenvalues, eigenvectors = np.linalg.eig(covariance)
13 eigenvalues = np.clip(eigenvalues, 0, 5)
14 covariance = np.dot(np.dot(eigenvectors,
15 np.diag(eigenvalues)), eigenvectors.T)
16 return multivariate_normal(mean, covariance)
17 except np.linalg.LinAlgError:
18 continue

A. Code to Gaussian Distribution Geneartion
In the following code, we provide the Python code for gen-

erating the Gaussian used in our paper.

B. More Synthetic Images Comparisons.
Fig.,6 shows synthetic images (224×224) from PSAQ-ViT,

PSAQ-ViT V2, and our SARDFQ. In comparison, images

generated by PSAQ-ViT and PSAQ-ViT V2 contain many

dull regions, such as the central parts of PSAQ-ViT and

most of PSAQ-ViT V2. These dull areas typically lack

content diversity, with simplified and repetitive textures, in-

dicating semantic inadequacy [33]. In contrast, SARDFQ

images exhibit greater content diversity and more complex

textures, suggesting adequate semantics.

We also emphasize that although the generated images

often have low sensory quality due to the presence of hard-

to-identify, unreal textures [77], they still perform well in

downstream tasks. As demonstrated in [13, 14, 84], recent

zero-shot quantization methods (TexQ [13], Qimera [14],

Intraq [84], etc.) produce images with low sensory qual-

ity, yet these methods achieve substantial performance im-

provements. Therefore, the effectiveness of generated im-

ages for downstream tasks should not be solely judged by

their sensory quality. Thus, we encourage readers to focus

on the semantic distribution extracted by the model, as il-

lustrated in Fig. 1a of the main paper.

C. More Ablation Study
The ε1 and ε2 in SL balance the smoothness of the pro-

posed SL loss. Tab. 6a demonstrates that the optimal per-

formance is achieved when ε1 = 5. Incrementally increas-

ing ε1 from 1 to 5 improves performance from 61.00% to

62.29%. Then, further increasing ε1 subsequently degrades

performance. For example, increasing ε1 to 9 results in

0.93% degradation. Tab. 6b presents the ablation study of

ε2. It can be seen that the optimal performance is achieved

when ε2 = 10. Using smaller or larger values than 10 will

hurt the performance.

D. Additional Quantization Results
D.1. Classification Results
Tab. 5 presents the quantization results for the W8A8 and

W4A8 settings. Here, we use a linear quantizer for atten-

tion scores, which is consistent with the compared meth-

ods. The results of the compared methods are copied from

their paper. It can be observed that the proposed SARDFQ

outperforms the compared methods in most cases, except

for W8A8 DeiT-T, where SARDFQ exhibits only a 0.05%

gap. Notably, SARDFQ generally provides larger perfor-

mance gains in the W4A8 setting. For instance, SARDFQ

achieves increases of 1.24% and 0.70% on W4A8 DeiT-S

and DeiT-B, respectively. These results clearly demonstrate

the effectiveness of the proposed SARDFQ.

D.2. Detection and Segmentation Results
In Tab. 7, we provide the results on detection and segmen-

tation tasks. Note that results with “†” are re-produced

by ours and the other results of PSAQ-ViT V2 [48] and

CLAMP-ViT [62] are copied from their paper. Following



Model W/A PSAQ-ViT [47] PSAQ-ViT V2 [48] SMI [33] CLAMP-ViT [62] SARDFQ (Ours)

ViT-S

(81.39)

8/8 31.45 - - - 80.81
4/8 20.84 - - - 78.49

ViT-B

(84.54)

8/8 37.36 - - 84.19 84.22
4/8 25.34 - - 78.73 82.19

DeiT-T

(72.21)

8/8 71.56 72.17 70.2770.13 72.17 72.12

4/8 65.57 68.61 64.2864.04 69.93 70.05

DeiT-S

(79.85)

8/8 76.92 79.56 - 79.55 79.81
4/8 73.23 76.36 - 77.03 78.27

DeiT-B

(81.85)

8/8 79.10 81.52 75.9977.51 - 81.83
4/8 77.05 79.49 78.5879.63 - 80.19

Swin-T

(81.35)

8/8 75.35 80.21 - 81.17 81.18
4/8 71.79 76.28 - 80.28 80.34

Swin-S

(83.20)

8/8 76.64 82.13 - 82.57 82.85
4/8 75.14 78.86 - 82.51 82.51

Table 5. Quantization results on ImageNet dataset, with top-1 accuracy (%) reported. The performance of the full-precision model is listed

below the model name, “W/A” denotes the bit-width of weights/activations. The results of PSAQ-ViT [47], PSAQ-ViT V2 [48], SMI [33],

and CLAMP-ViT [62] are copied from their paper, and “-” denotes the results are unavailable. For SMI [33], we provide the performance

of using dense (normal-sized numbers) and sparse (smaller-sized numbers) synthetic images, respectively.

ε1 Top-1

1 61.00

3 61.05

5 62.29
7 61.15

9 61.36

(a)

ε2 Top-1

6 61.62

8 61.88

10 62.29
12 62.13

14 61.10

(b)

Table 6. Effect of varying (a) ε1; (b) ε2.

[48, 62], the results are evaluated on Mask R-CNN and

Cascade R-CNN models, both with Swin-S as the back-

bone. The proposed SARDFQ consistently outperforms the

compared methods. For example, SARDFQ achieves 1.2

and 2.9 increases on box and mask AP for W4A8 Mask R-

CNN, respectively. For W4A8 Cascade R-CNN, SARDFQ

achieves 0.5 and 0.2 increases on box and mask AP for

W4A8 Mask R-CNN, respectively.

E. Practical Efficiency
In this subsection, we employ ViT-B as the example to pro-

vide practical efficiency results. For SARDFQ, if quantiz-

ing ViT-B using 3090 GPU, the data synthesis stage con-

sumes 11887 MB GPU memory and 13 minutes, while the

quantized network learning consumes 3324 MB GPU mem-

ory and 14 minutes.

For the quantized ViT-B, inference efficiency is only re-

lated to a specific bit-width. Tab. 8 provides efficiency met-

rics by evaluating the 4-bit ViT-B on 3090 GPU. We imple-

ment the 4-bit CUDA kernel by using Cutlass library and

run the model on 3090 GPU with 200 images. For the FP

model, the model size is 346 MB, the inference speed is

534 ms, and the running memory is 1859 MB. For the 4-bit

model, the model size is 43.3 MB, the inference speed is

244 ms, and the running memory is 1165 MB. These results

highlight the practical benefits of 4-bit quantization in terms

of storage and computational efficiency.

F. Other Clarification

F.1. Why using Cosine similarity

We chose cosine similarity since it is a widely used and intu-

itive metric to measure feature alignment [21, 23, 66]. We

also emphasize that cosine similarity ranges from -1 to 1,

making values like 0.32 and 0.41 in Tab. 1 of the main pa-

per reasonable.

F.2. Visualization of attention priors and generated
images

Fig. 7 show synthetic images and their corresponding atten-

tion priors (the most salient generated map used in the last

attention layer), demonstrating effective enhancement of at-

tended regions.



Model W/A Method AP (box) AP (mask)

Mask R-CNN

(Swin-S)

32/32 - 48.5 43.3

4/8
PSAQ-ViT V2† [48] 44.7 39.0

SARDFQ (Ours) 45.9 41.9

8/8
PSAQ-ViT V2† [48] 47.8 42.7

SARDFQ (Ours) 48.2 43.0

Cascade R-CNN

(Swin-S)

32/32 - 51.8 44.7

4/8

PSAQ-ViT V2 [48] 47.9 41.4

PSAQ-ViT V2† [48] 48.2 42.7

CLAMP-ViT [62] 48.5 42.2

SARDFQ (Ours) 49.0 42.9

8/8

PSAQ-ViT V2 [48] 50.9 44.1

PSAQ-ViT V2† [48] 51.0 44.2

CLAMP-ViT [62] 51.4 44.6
SARDFQ (Ours) 51.7 44.6

Table 7. Comparison of Mask R-CNN and Cascade R-CNN with Swin-S as the backbone. “†” indicates the results are re-produced by ours

and the remaining results of PSAQ-ViT V2 [48] and CLAMP-ViT [62] are copied from their paper. “AP (box)” is the box AP for object

detection and “AP (mask)” is the mask AP for instance segmentation.

Bit Size (MB) Speed (ms) Running Memory (MB)

FP 346 534 1859

4-bit 43.3 (8×) 244 (2.2×) 1165 (1.6×)

Table 8. Comparison of FP and 4-bit ViT-B with 200 images.

SARDFQ (Ours)Attention priors

Figure 7. Attention priors (of the last layer) and generated images.

F.3. Runtime Examples
Performing data synthesis for ViT-B with SARDFQ on

a 3090 GPU requires 13 minutes, while PSAQ-ViT and

PSAQ-ViT V2 consume 8 and 25 minutes, respectively.


