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1. UE Environments
1.1. Comparison with other Simulators
To better explain Table 2, we list the description of each sym-
bol about the scene types and playable entities in Table 3.
Since photorealism mainly relies on the engine used, we
visualize the snapshots rendered by different engines in Fig-
ure 1. Note that Google Maps are images captured in the real
world, but can not simulate the dynamic of the scenes and in-
teractions between objects. By utilizing advanced rendering
and physics engines, Unreal Engine simulates large-scale
photorealistic environments that are not only visually appeal-
ing but also capable of complex interactions between agents
and objects. So we choose to build environments on Unreal
Engine.

1.2. Environments used in Visual Navigation
We carefully selected two photo-realistic environments
(Roof and Factory) for training and evaluating navigation in
the wild, shown in Figure 2. The Roof environment features
multiple levels connected by staircases and large pipelines
scattered on the ground, providing an ideal setting for the
agent to learn complex action combinations for transitioning
between levels, such as jumping, climbing, and navigating
around obstacles. The Factory environment, on the other
hand, is characterized by compact boxes and narrow path-
ways, challenging the agent to determine the appropriate
moments to jump over obstacles or crouch to navigate un-
der them. These two environments offer diverse spatial
structures, enabling agents to develop an understanding of
multi-level transitions and precise obstacle avoidance.

1.3. Environments used in Active Visual Tracking
For training agents via offline reinforcement learning, we
selected 8 distinct environments to collect demonstrations, as
is shown in Figure 5. To comprehensively evaluate the gen-
eralization of the active visual tracking agents, we selected
16 distinct environments, categorized into Interior Scenes,
Palaces, Wilds, and Modern Scenes. Each category presents
unique challenges: 1) Interior Scenes feature complex in-
door structures with frequent obstacles; 2) Palaces include
multi-level structures and narrow pathways; 3) Wilds encom-
pass irregular terrain and varying illumination; 4) Modern
Scenes offer high-fidelity, real-world scenarios with modern
buildings and objects. These diverse environments facilitate
a thorough assessment of the agent’s generalization capa-
bilities across varying complexities. The snapshot of each
environment is shown in Figure 3.

1.4. Navigation Mesh
Based on NavMesh, we build an internal navigation system,
allowing agents to autonomously navigate with the built-
in AI controller in the Unreal Engine. This includes path-

finding and obstacle-avoidance capabilities, ensuring smooth
and realistic movement throughout diverse terrains and struc-
tures. Moreover, in our City style map, we manually con-
struct road segmentation, we manually segment the roads to
distinguish between pedestrian and vehicle pathways. When
agents use the navigation system for autonomous control,
they will navigate the shortest path based on the priority
of the different areas. Figure 4 shows an example of the
rendered semantic segmentation for NavMesh in an urban
city.

2. Exemplar Tasks

2.1. Visual Navigation

In this task, the agent is initialized at a random location in
the environment at the beginning of each episode, while the
target object’s location and category remain fixed throughout.
The agent must rely on its first-person view observations and
the relative spatial position of the target as input. The ul-
timate objective is to locate the target object within 2000
steps. Success is defined by the agent reducing the relative
distance to less than 3 meters and aligning its orientation
such that the relative rotation between the target and the
agent is smaller than 30 degrees (in the front of the agent).
This setup challenges the agent to optimize its movements
and decision-making while adapting to the randomized start-
ing conditions and dynamic environment. All methods in the
task share the same discrete action space to control the move-
ment, consisting of moving forward (+1 meter/s), moving
backward (-1 meter/s), turning left (-15 degrees/s), turning
right (+15 degrees/s), jumping (two continuous jumping ac-
tions trigger the climbing action), crouching, and holding
position. This action space enables the agent to navigate and
interact with complex 3D environments, making strategic
decisions in real-time to reach the target object efficiently.
The step reward for the agent is defined as:

r(t) = tanh(
dis2target(t− 1)− dis2target(t)

max(dis2target(t− 1), 300)
− |Ori|

90◦
)

(1)
where dis2target(t) is the Euclidean distance between the
agent and the target at a given timestep t and |Ori| is the
absolute orientation error (in degrees) between the agent’s
current heading and the direction toward the target, normal-
ized by 90◦

2.2. Active Visual Tracking

Referring to previous works [6], we use human characters as
an agent player and a continuous action space for agents. The
action space contains two variables: the angular velocity and
the linear velocity. Angular velocity varies between −30◦/s
and 30◦/s, while linear velocity ranges from −1 m/s to
1 m/s. In the agent-centric coordinate system, the reward

https://dev.epicgames.com/documentation/en-us/unreal-engine/world-partitioned-navigation-mesh?application_version=5.4


Table 1. We evaluate the simulation speed on an Nvidia GTX 4090 GPU, Intel i7-14700K CPU, and Windows OS by repeatedly calling
UnrealCV+ API function 1000 times and recording the execution time. Multi-agent interaction performance is measured using the gym
interface. The image resolution is set to 640×480. The table presents the FPS measurement results across environments of varying scales.

Env Color Image Object Mask Surface Normal Depth Image 2 Agents Interaction 6 Agents Interaction 10 Agents Interaction

FlexibleRoom (71 objects, 2440m2) 85 164 137 100 94 40 27
BrassGarden (467 objects, 9900m2) 107 214 173 123 102 48 31
Supermarket (2839 objects, 11700m2) 99 173 167 117 70 33 19
SuburbNeighborhoodDay (2469 objects, 23100m2) 79 139 112 92 53 27 17
GreekIsland (3174 objects, 448800m2) 82 167 124 103 52 23 16
MedievalNatureEnvironment (8534 objects, 16km2) 70 112 97 74 29 14 10

Table 2. The comparison with related photo-realistic virtual worlds for embodied AI.

Table 1: The comparison with related virtual worlds for embodied AI.
Virtual
Worlds

Scene:
Categories

Scene:
Scale Level

Scene:
Unstr. Terr.

Scene:
Base Engine

Agent:
Body

Agent:
Nav. Sys.

Agent:
Multi-agent

VirtualHome Room - Unity X X
AI2THOR Room - Unity - -

ThreeDWorld Room, Building, Landscape X Unity - X
OmniGibson Room - Omniverse - - -
Habitat 3.0 Room - Habitat-Sim X X

CARLA Building, Town - UE 4 - X
AirSim Building, Town, Landscape - UE 4 - X

LEGENT Room, Building X Unity X -
V-IRL Town, Landscape X Google Map X X

UnrealZoo Room, Building,
Town, Landscape X UE 4/5 X X

Table 2: The comparison with related virtual worlds for embodied AI.

Virtual
Worlds

Scene:
Categories

Scene:
Scale Level

Scene:
Style

Scene:
Base Engine

Agent:
Body

Agent:
Nav. Sys.

Agent:
Multi-agent

VirtualHome Indoor Modern, Western Unity X X
AI2THOR Indoor Modern, Western Unity - -

ThreeDWorld Indoor, Building, Community Modern, Western, Nature Unity - X
OmniGibson Indoor Modern, Western Omniverse - - -
Habitat 3.0 Indoor Modern, Western Habitat-Sim X X

CARLA Community, Landscape Modern, Western, Nature UE 4/5 X X
AirSim Community, Landscape Modern, Western, Nature UE 4 - X

LEGENT Indoor, Building Modern, Western Unity X X
V-IRL Community, Landscape Modern, Western, Nature Google Map X X

UnrealZoo Indoor, Building,
Community, Landscape

Ancient, Modern, Sci-Fi
Western, Eastern, Nature UE 4/5 X X

Symbol Description
Interior house with furnishings

Residential community with multiple buildings
High-fidelity large-scale urban environments

Exterior scenes with roads
Natural scenes with forests or grasslands

Large-scale natural landscape, including lakes, mountains, desert
An island landscape

Castle-style historic buildings
Asian temple architecture features stairs, lofts, and shrines.

Industrial areas with internal roads and factory facilities
Educational settings, including classrooms and gymnasiums.
Sports venue scenes, such as swimming pool, sport stadium.

Supermarket contains a wide range of daily essentials and produce.
Typical urban public transportation hubs, such as train and gas stations.

Detailed hospital interior scenes.
Human characters with detailed features such as hair textures, clothing, and actions

Mobile robot
Driveable car

Animals include common animal species such as cats, dogs, horses, pigs, etc.
Driveable motorbike

Drones
Virtual camera that has no physical entity and is movable

Table 3: Caption
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function is defined as:

r = 1− |ρ− ρ∗|
ρmax

− |θ − θ∗|
θmax

(2)

where (ρ, θ) denotes the current target position relative to
the tracker, (ρ∗, θ∗) = (2.5m, 0) represents the expected
target position, i.e., the target should be 2.5m in front of
the tracker. The error is normalized by the field of the view
(ρmax, θmax). During execution, an episode ends with a
maximum length of 500 steps, applying the appropriate ter-
mination conditions. In the experiment, we adopt the original
neural network structure and parameters, as listed in Table
6 and 7.

2.3. Task Configuration in JSON File
We provide an example of the task configuration JSON file
in Figure 6. Using the JSON file, we can easily set the con-
figuration of the binary, the continuous and discrete action
space for each agent, the placement of the binding camera,
choose the area to reset, and other hyper-parameters about
the environments.

3. Implementation Details of Agents

3.1. Data Collection for Offline RL
To collect demonstration for offline reinforcement learning,
we use state-based expert policy and the multi-level perturba-
tion strategy [6] to automatically generate various imperfect

demonstrations as the offline dataset. For active visual track-
ing, we employ three distinct datasets for training agents
via offline reinforcement learning (Offline RL) algorithms,
referred to as 1 Env., 2 Envs., and 8 Envs. The detailed
composition of each dataset is depicted in Figure 5. For the
1 Env. dataset, we use only the FlexibleRoom, an abstract
environment enriched with diverse augmentation factors, to
gather 100k steps of trajectory data. For 2 Envs., we collect
50k step trajectories from FlexibleRoom and an additional
50k steps from the Supermarket environment. The 8 Envs.
dataset involves eight different environments, with 12.5k
steps collected from each. Therefore, the total amount of
data in the three datasets is the same (100k) to ensure the
fairness of the comparison. These dataset configurations
aim to highlight the critical role of environment diversity in
enhancing the generalization capabilities of embodied AI
agents.

3.2. RL-based Agents
Learning to navigate with online reinforcement learn-
ing. For navigation, we construct an RL-based end-to-end
model, using A3C [3] to accelerate online reinforcement
learning in a distributed manner. The model’s structure is as
follows: a mask encoder extracts spatial visual features from
the segmentation mask, which are then passed to a temporal
encoder to capture latent temporal information. Finally, the
spatiotemporal features, concatenated with the target’s rela-
tive spatial position, are fed into the actor-critic network to
optimize the actor layer for action prediction. The detailed
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network structure and parameters used in the experiment are
listed in Table 4 and 5. Here, we provide the training curves
in Roof and Factory environments, depicted in Figure 10. In
the Factory, we set the number of workers to 4, while in the
Roof, the number of workers is set to 6. It can be observed
that, for Online RL, the number of workers and the com-
plexity of environments have a significant impact on training
efficiency. Looking forward, we anticipate that offline-based
algorithms can effectively address the challenges of training
efficiency and generalization.

Learning to track with offline reinforcement learn-
ing. For the tracking task, we adopt an offline reinforcement
learning (Offline RL) approach to enhance training efficiency
and improve the agent’s generalization to unknown environ-
ments. Specifically, we build an end-to-end model trained
using offline data and the conservative Q-learning (CQL)
strategy [2]. We adopt the same model structure from the lat-
est visual tracking agent [6], consisting of a Mask Encoder,
a Temporal Encoder, and an Actor-Critic network. Detailed
model structures and training parameters are summarized in
Table 6 and 7. Additionally, we provide the model’s loss
curves under different dataset setups, as shown in Figure
9. The model achieves near-convergence within two hours

across all dataset setups. To ensure the loss curves stabilize
fully, we continued training for an additional three hours,
during which no significant further decrease in the loss was
observed. A comprehensive evaluation of the model’s per-
formance is presented in Tables 8 and 9, highlighting its
strong generalization to unseen environments and robustness
to dynamic disturbances. The training efficiency, generaliza-
tion capability, and robustness achieved by offline RL further
reinforce our belief that offline RL methods will become a
mainstream approach for rapid prototyping and iteration in
embodied intelligence systems.

3.3. VLM-based Agents
We built agents with a reasoning framework based on the
Large Vision-Language Model. We employ OpenAI GPT-4o
as the base model. System prompt used in the navigation
task, as shown in Figure 8 and system prompt used in the
tracking task, as shown in Figure 7.

3.4. Human Benchmark for Navigation
In the navigation task, we incorporated human evaluation as
a baseline for comparison to demonstrate the existing gap
between the current method and optimal navigation perfor-



Unity Omniverse Habitat-Sim

Google Map Unreal Engine 4 Unreal Engine 5

Figure 1. Comparison of the visual realism of different engines: we show the snapshots captured from different engines to compare the
photo-realism of different environments for an intuitive feeling. Note that Google Maps capture and reconstruct the images from the real
world, but can not simulate the dynamic of the scenes and interactions between agents and objects.

Table 4. Details the neural network structure of RL-based agent for navigation task, where 5×5-32S1 means 32 filters of size 5×5 and stride
1, FC256 indicates the fully connected layer with output dimension 256, and LSTM128 indicates that all the sizes in the LSTM unit are 128.

Module Mask Encoder
Layer# CNN Pool CNN Pool CNN Pool CNN Pool

Parameters 5×5-32S1 2-S2 5×5-32S1 2-S2 4×4-64S1 2-S2 3×3-64S1 2-S2
Module Temporal Encoder Actor Critic
Layer# FC LSTM FC FC

Parameters 256 128 2 2

Roof Factory

Figure 2. Two photo-realistic environments used for visual naviga-
tion.

mance. Specifically, five male and five female evaluators
participated in the assessment, performing the same naviga-
tion tasks under comparable conditions.

Before each human evaluator began their assessment, we
provided a free-roaming perspective to familiarize them with
the map structure and clearly conveyed the target’s location

and image. This ensured that human evaluators had a com-
prehensive understanding of the environment and the target’s
position. During the evaluation, the player was randomly
initialized in the environment, and human evaluators used
the keyboard to control the agent’s movements. Each human
evaluator repeated the experiment five times, providing mul-
tiple data points to ensure reliability and reduce variability
in performance measurements. The termination conditions
for the evaluation were identical to those applied to the RL-
based agent, ensuring consistency in the comparison.



Bunker StorageHouse SoulCave UndergroundParking

Desert Ruins GreekIsland SnowMap RealLandscape

WesternGarden TerrainDemo ModularSciFiSeason1ModularGothicNight

SuburbNeighborhoodDay DowntownWest IndustrialArea Venice

Compact 
Interior

Wildscape
Realm

Palace 
Maze

 Lifelike
Urbanity

Figure 3. The snapshots of 16 environments used for testing active visual tracking agents. The text on the left indicates the category
corresponding to that line of environment.

Table 5. The experiment setting and hyper-parameters used for training the RL-based navigation agent.

Name Value Name Value
Learning Rate 1e-4 LSTM update step 20
workers (Roof) 6 LSTM Input Dimension 256
workers (Factory) 4 LSTM Output Dimension 128
Position Input Dimension 2 LSTM Hidden Layer size 1

4. Additional Results
4.1. Learning Curve
We provide the CQL loss curve under the 1 Env., 4 Envs.
and 8 Envs. training setup. As shown in Figure 9, the
offline model approaches convergence after two hours and
we continued training for another three hours after nearing
convergence, observing no significant further decrease in
the loss. Note that the offline training was conducted on a
Nvidia RTX 4090 GPU.

4.2. Testing in 16 Unseen Environments
We provide the detailed quantitative evaluation results
(episodic returns, episode length, success rate) of the RL-
based embodied tracking agents across 16 environments,
listed in Table 8. In each environment, we report the av-

erage results over 50 episodes. The results show that in
the Palace Maze, which contains abundant structural ob-
stacles, the agent’s tracking performance was generally
weaker compared to the other three categories. In con-
trast, the agent performed generally better in Lifelike Ur-
banity, characterized by its relatively regular and flat ter-
rain. Additionally, we observed that as the diversity of
the training environments increased, the agent’s tracking
performance improved across all four environment cate-
gories. This highlights the positive impact of diverse train-
ing data on enhancing the agent’s overall tracking effec-
tiveness. We also provide vivid demo videos in https:
//unrealzoo.notion.site/task-evt.

https://unrealzoo.notion.site/task-evt
https://unrealzoo.notion.site/task-evt


Table 6. Network structure used in the offline RL method [6], where 8×8-16S4 means 16 filters of size 8×8 and stride 4, FC256 indicates a
fully connected layer with dimension 256, and LSTM64 indicates that all sizes in the LSTM unit are 64.

Module Mask Encoder Temporal Encoder Actor Critic
Layer# CNN CNN FC LSTM FC FC

Parameters 8×8-16S4 4×4-32S2 256 64 2 2

Figure 4. An example of the NavMesh with semantic segmentation.
The human character will prioritize using the pink area for pedes-
trian navigation tasks, while the vehicles will use the blue area.

Table 7. The hyper-parameters used for offline training and the
policy network.

Parameter Value Parameter Value
Learning Rate 3e-5 LSTM steps 20
Discount 0.99 LSTM In Dim 256
Batch Size 32 LSTM Out Dim 64
LSTM Hidden Layers 1

4.3. Testing in Social Tracking Scenarios
We select 4 environments from different categories as the
testing environments, including StorageHouse, DesertRu-
ins, TerrainDemo, and SurburNeighborhoodDay. We test
the distraction robustness of the social tracking agents by
adding different numbers of distractors (4, 8, 10) in the
environment. The distractors randomly walk around the
environment, which may produce various unexpected pertur-
bations to the tracker, such as visual distractions, occlusion,
or blocking the tracker’s path. As shown in Table 9, the
tracking performance of the three agents steadily decays
with the increasing number of distractors.

4.4. Cross-platform Evaluation
To evaluate the generalization ability of policies trained in
UnrealZoo, we conducted cross-platform experiments in
both simulation and real-world settings. During our investi-
gation, we found that many existing simulation environments
[4, 5, 7] lack flexibility in task customization, making it dif-
ficult to add or modify task definitions. Among the available

options, we selected ThreeDWorld [1] for its minimal migra-
tion overhead.

For evaluation, we used the publicly available "Suburb
Scene 2023" map and designated the robot Magnebot as
the tracking target, as shown in Figure 11. We tested two
policies trained under different environment settings: a sin-
gle environment (1-Env) and eight diverse environments
(8-Envs). Due to limitations in ThreeDWorld, specifically,
the inability to retrieve the absolute position of Magnebot,
we could not compute the Average Reward (AR) metric. In-
stead, we report the episode length (EL) and success rate
(SR) as alternative indicators of tracking performance.

Beyond simulation, we further validated the trained poli-
cies in the real world, illustrated in Figure 11. In this sce-
nario, the target person walks along an S-shaped path in
an open area with various distractors. We conducted five
trials for each policy. Since all trials were successful, the
success rate alone could not reflect performance differences.
Additionally, absolute position data was unavailable in the
real-world setting, so we introduced two alternative evalua-
tion metrics:
• Average Deviation (AD): the average pixel offset between

the target’s bounding box center and the image center.
• IoU: the Intersection over Union between the current target

bounding box and the initial bounding box.
These metrics assess the agent’s ability to maintain con-

sistent and centered tracking under dynamic motion and
environmental interference. The final results are listed in Ta-
ble 10. Overall, the experimental findings highlight that train-
ing with diverse environments in UnrealZoo significantly
improves the policy’s generalization ability and robustness.

5. Limitations and Discussions.

While our proposed environment provides diverse and com-
plex scenarios for visual navigation, tracking, and other
embodied vision tasks, it currently has some limitations that
should be overcome in future work: 1) Limited Physical
Simulation Fidelity. The current version focuses on visual
rendering and interaction rather than the precision of phys-
ical interactions for control. We will consider enhancing
physics engine integration for more accurate and realistic
physical interactions. 2) Licensing Restrictions and Share-
ability. Due to marketplace content licensing restrictions,
we are unable to open-source the complete environment
source code for more in-depth customization. To address
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Figure 5. The 8 environments used for collecting offline dataset.

this, we will develop alternative scenes based on free assets
or negotiate special licensing agreements with asset creators,
and extend the UnrealCV command system to support more
advanced customization in the released binary. 3) Limited
Interactions. Interaction capabilities are primarily limited
to pre-defined objects, and multi-agent interactions remain
relatively basic, lacking complex social dynamics. We will
extend to more complex interaction tasks such as object ma-
nipulation, tool use, and environmental modification, and
implement more sophisticated social agent behavior models
including dialogue and emotional expression.
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A Json File for Task Configuration

" env_name " : env_name ,
" env_b in " : pa th − to − b i n a r y ,
" env_map " : map_name ,
" env_bin_win " : pa th − to − b i n a r y ( f o r windows ) ,
" t h i r d _ c a m " : {" cam_id " : 0 , " p i t c h " : −90 ," yaw " : 0 , " r o l l " : 0 , " h e i g h t _ t o p _ v i e w

" : 1 4 6 0 . 0 , " fov " : 90} ,
" h e i g h t " : 4 6 0 . 0 ,
" i n t e r v a l " : 1000 ,
" a g e n t s " : {

" p l a y e r " : {
" name " : [ " BP_Charac te r_923 " ] ,
" cam_id " : [ 3 ] ,
" c l a s s _ n a m e " : [ " b p _ c h a r a c t e r _ C " ] ,
" i n t e r n a l _ n a v " : t r u e ,
" s c a l e " : [ 1 , 1 , 1 ] ,
" r e l a t i v e _ l o c a t i o n " : [ 2 0 , 0 , 0 ] ,
" r e l a t i v e _ r o t a t i o n " : [ 0 , 0 , 0 ] ,
" h e a d _ a c t i o n _ c o n t i n u o u s " : {" h igh " : [ 1 5 , 1 5 , 1 5 ] , " low " :

[ −15 , −15 , −15]} ,
" h e a d _ a c t i o n " : [ [ 0 , 0 , 0 ] , [ 0 , 3 0 , 0 ] , [ 0 , − 3 0 , 0 ] ] ,
" a n i m a t i o n _ a c t i o n " : [ " s t a n d " , " jump " , " c r o uc h " ] ,
" move_ac t ion " : [
[ a n g u l a r , v e l o c i t y ]

. . .
] ,
" m o v e _ a c t i o n _ c o n t i n u o u s " : {" h igh " : [ 3 0 , 1 0 0 ] , " low " : [ −30 , −100]}

} ,
" a n i ma l " " {
. . .
}
" d rone " : {

. . .
}

} ,
. . .
" s a f e _ s t a r t " : [

[ x , y , z ] ,
. . .

] ,
" r e s e t _ a r e a " : [ x_min , x_maxin , y_min , y_max , z_min , z_max ] ,
" r a n d o m _ i n i t " : f a l s e ,
" env " : {" i n t e r a c t i v e _ d o o r " : [ ] } ,
" obj_num " : 466 ,
" s i z e " : 1 9 2 5 5 5 . 0 ,
" a r e a " : 9 9 0 0 . 0 ,
" bbox " : [ 1 1 0 . 0 , 9 0 . 0 , 1 9 . 4 5 ]

Figure 6. An example of the task configuration file in JSON format.



System Prompt used for active tracking

O b j e c t i v e :
You a r e an i n t e l l i g e n t t r a c k i n g a g e n t d e s i g n e d t o c o n t r o l t h e r o b o t t o t r a c k

t h e p e r s o n i n t h e view . The f i r s t p e r s o n i n your view i s your t a r g e t . You
need t o p r o v i d e c o n c r e t e moving s t r a t e g i e t o h e l o r o b o t t r a c k i n g t h e
t a r g e t i n t h e g i v e n e n v i r o n m e n t .

R e p r e s e n t a t i o n d e t a i l s :
1 . Moving i n s t r u c t i o n s a r e c o n c r e t e a c t i o n s t h a t t h e r o b o t can t a k e t o a d j u s t

i t s v i e w p o i n t and d i s t a n c e t o t h e t a r g e t . The moving i n s t r u c t i o n s i n c l u d e
:
−move c l o s e r : Move t h e r o b o t c l o s e r t o t h e t a r g e t . Th i s s h o u l d be chosen

when t h e t a r g e t i s t o o f a r away from t h e r o b o t and t h e r e i s no
o b s t a c l e i n t h e way .

−move f u r t h e r : Move t h e r o b o t f u r t h e r away from t h e t a r g e t . Th i s s h o u l d
be 2 chosen when t h e t a r g e t i s t o o c l o s e t o t h e r o b o t and on ly p a r t o f
t h e t a r g e t body i s v i s i b l e i n t h e view .

−keep c u r r e n t : M a i n t a i n t h e c u r r e n t d i s t a n c e and a n g l e between t h e r o b o t
and t h e t a r g e t . Th i s i s chosen when t h e t a r g e t i s f u l l y o b s e r v a b l e i n
t h e view and t h e r e i s enough s p a c e i n f r o n t o f bo th t r a c k e r and t a r g e t

w i t h o u t any p o t e n t i a l o b s t a c l e s may c a u s e c o l l i s i o n and o c c l u s i o n .
− t u r n l e f t : Turn t h e r o b o t t o l e f t d i r e c t i o n , t h e t a r g e t w i l l move

t o w a r d s t h e r i g h t s i d e i n n e x t f rame .
− t u r n r i g h t : Turn t h e r o b o t t o r i g h t d i r e c t i o n , t h e t a r g e t w i l l move

t o w a r d s t h e l e f t s i d e i n n e x t f rame .
I n p u t U n d e r s t a n d i n g :
1 . * * Image : * * We p r o v i d e a f i r s t − p e r s o n view o b s e r v a t i o n o f t h e r o b o t t o h e l p

you u n d e r s t a n d t h e s u r r o u n d i n g e n v i r o n m e n t . The o b s e r v a t i o n i s r e p r e s e n t e d
as a c o l o r image from t h e t r a c k e r ’ s f i r s t − p e r s o n p e r s p e c t i v e .

Outpu t U n d e r s t a n d i n g :
1 . ** Moving S t r a t e g y : * * A t e m p o r a l r e a s o n a b l e move s t r a t e g y t o a d j u s t t h e

r o b o t v i e w p o i n t and d i s t a n c e t o a c h i e v e r o b o t s ’ s long − te rm t r a c k i n g t a s k .
Th i s s h o u l d be r e p r e s e n t e d as a c o n c r e t e moving i n s t r u c t i o n s , t h e
i n s t r u c t i o n s s h o u l d be choose from " move c l o s e r " , " move f u r t h e r " , " keep
c u r r e n t " , " t u r n l e f t " , " t u r n r i g h t " . Format − [ Keep c u r r e n t ] .

S t r a t e g y C o n s i d e r a t i o n s :
1 . I f t h e person ’ s h o r i z o n t a l p o s i t i o n i n t h e r o b o t ’ s f i e l d o f view d e v i a t e s

from t h e c e n t e r by more t h a n 25\% of t h e image width , we c o n s i d e r t h e
t a r g e t t o be on one s i d e o f t h e image , o t h e r w i s e we say t h e t a r g e t i s n e a r

t h e c e n t e r .
I n s t r u c t i o n s :
1 . P r o v i d e ONLY t h e d e c i s i o n i n t h e [ o u t p u t : ] s t r i c t l y f o l l o w i n g t h e f o r m a t

w i t h o u t a d d i t i o n a l e x p l a n a t i o n s o r a d d i t i o n a l t e x t .

Figure 7. System prompt used for tracking.
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System Prompt used for navigation

O b j e c t i v e :
You a r e an i n t e l l i g e n t n a v i g a t i o n a g e n t d e s i g n e d t o c o n t r o l t h e r o b o t t o

n a v i g a t e t o t h e t a r g e t o b j e c t l o c a t i o n based on f i r s t − p e r s o n o b s e r v a t i o n
and p r o v i d e a r e l a t i v e p o s i t i o n between t h e r o b o t and t h e t a r g e t . You need

t o p r o v i d e an a c t i o n s e q u e n c e t o h e l p t h e r o b o t move t o t h e t a r g e t
l o c a t i o n .

R e p r e s e n t a t i o n d e t a i l s :
1 . R e l a t i v e P o s i t i o n : Th i s c o n t a i n s t h r e e e l emen t s , i n t h e f o r m a t − [ D i s t a n c e

, D i r e c t i o n , He i gh t ] .
− D i s t a n c e : The r e l a t i v e d i s t a n c e between t h e r o b o t and t h e t a r g e t o b j e c t .
− D i r e c t i o n : The t a r g e t o b j e c t ’ s r e l a t i v e d i r e c t i o n t o t h e r o b o t ,

r e p r e s e n t e d i n d e g r e e s .
1 . A c t i o n s : These a r e t h e movements t h e r o b o t can pe r fo rm t o a d j u s t i t s

p o s i t i o n . The a v a i l a b l e a c t i o n s i n c l u d e :
−Move Forward : P r o p e l t h e r o b o t f o r w a r d by 100 c e n t i m e t e r .
−Move Backward : P r o p e l t h e r o b o t backward by 100 c e n t i m e t e r .
−Turn L e f t : R o t a t e t h e r o b o t 15 d e g r e e s t o t h e l e f t .
−Turn R i g h t : R o t a t e t h e r o b o t 15 d e g r e e s t o t h e r i g h t .
−Jump : Make t h e r o b o t l e a p i n t o t h e a i r , r o b o t s h o u l d use t h i s a c t i o n t o

jump ove r o b s t a c l e s o r c l imb ove r s t a i r s .
−Crouch : Lower t h e r o b o t i n t o a c r o u c h i n g p o s i t i o n f o r 2 seconds , a f t e r

which i t w i l l a u t o m a t i c a l l y s t a n d up .
−Keep C u r r e n t : M a i n t a i n t h e r o b o t ’ s c u r r e n t p o s i t i o n w i t h o u t any movement

.
I n p u t U n d e r s t a n d i n g :
1 . * * Image : * * We p r o v i d e a f i r s t − p e r s o n view o b s e r v a t i o n o f t h e r o b o t t o h e l p

you u n d e r s t a n d t h e s u r r o u n d i n g e n v i r o n m e n t . The o b s e r v a t i o n i s r e p r e s e n t e d
as a c o l o r image from t h e r o b o t ’ s f i r s t − p e r s o n p e r s p e c t i v e .

2 . * * R e l a t i v e P o s i t i o n : * * Th i s d a t a p r o v i d e s t h e t a r g e t o b j e c t ’ s r e l a t i v e
p o s i t i o n t o t h e r o b o t , i n c l u d i n g t h e d i s t a n c e , d i r e c t i o n , and h e i g h t . The
d i s t a n c e i s measured i n c e n t i m e t e r s , t h e d i r e c t i o n i n d e g r e e s , and t h e
h e i g h t i n c e n t i m e t e r s .

Outpu t U n d e r s t a n d i n g :
1 . ** Ac t i on Sequence : * * Th i s i s a s e r i e s o f Three c o n t i n u o u s a c t i o n s t h a t t h e

r o b o t s h o u l d t a k e t o n a v i g a t e toward t h e t a r g e t o b j e c t , i n t h e f o r m a t − [
Act ion1 , Act ion2 , Ac t ion3 ] . Each a c t i o n s h o u l d be chosen from t h e
a v a i l a b l e a c t i o n s ment ioned above .

S t r a t e g y C o n s i d e r a t i o n s :
1 . A s s e s s i n g R e l a t i v e P o s i t i o n : Begin by e v a l u a t i n g t h e t a r g e t o b j e c t ’ s

r e l a t i v e p o s i t i o n i n t e r m s of d i s t a n c e , d i r e c t i o n , and h e i g h t t o in fo rm
t h e a c t i o n s e q u e n c e .

2 . A c t i o n Combina t ion f o r N a v i g a t i o n : U t i l i z e t h e a c t i o n s e q u e n c e t o c r e a t e
e f f e c t i v e c o m b i n a t i o n s , each a c t i o n w i l l l a s t f o r 1 s e c o n d s .

3 . O b s t a c l e D e t e c t i o n : Leve rage t h e f i r s t − p e r s o n o b s e r v a t i o n t o i d e n t i f y
o b s t a c l e s . Based on t h e i r l o c a t i o n , f o r m u l a t e a c t i o n s e q u e n c e s t h a t
f a c i l i t a t e smooth n a v i g a t i o n w h i l e a v o i d i n g c o l l i s i o n s .

I n s t r u c t i o n s :
1 . P r o v i d e ONLY t h e a c t i o n s e q u e n c e i n t h e [ o u t p u t : ] s t r i c t l y f o l l o w i n g t h e

f o r m a t −[ Act ion1 , Act ion2 , Ac t ion3 ] , w i t h o u t a d d i t i o n a l e x p l a n a t i o n s o r
a d d i t i o n a l t e x t .

Figure 8. System prompt used for navigation.



Table 8. Quantitative evaluation results of the offline RL method across 16 environments. The environments are grouped into four categories:
Compact Interior, Wildscape Realm, Palace Maze, and Lifelike Urbanity. The table compares the performance of agents trained on different
offline dataset settings: 1 Env. (single environment), 2 Envs. (two environments), and 8 Envs. (eight environments). Each cell presents three
metrics from left to right: Average Episodic Return (ER), Average Episode Length (EL), and Success Rate (SR).

Category Environment Name
1 Env.

ER/EL/SR
2 Envs.

ER/EL/SR
8 Envs.

ER/EL/SR

Compact
Interior

Bunker 241/412/0.56 245/391/0.56 234/429/0.70
StorageHouse 213 /424 /0.68 275/449/0.76 170/434/0.64

SoulCave 229/402/0.60 252/422/0.56 206/405/0.58
UndergroundParking 179/391/0.56 250/424/0.62 184/410/0.60

Wildscape
Realm

Desert Ruins 209/392/0.54 293/449/0.70 277/453/0.70
GreekIsland 245/411/0.62 264/423/0.64 257/466/0.78
SnowMap 204/399/0.62 322/456/0.78 278/474/0.86

RealLandscape 171 /383/0.42 225/372/0.44 223/444/0.70

Palace
Maze

WesternGarden 230/403/0.54 209/408/0.54 296/472/0.82
TerrainDemo 232/411/0.56 233/403/0.56 192/411/0.56

ModularGothicNight 190/360/0.52 244/423/0.62 272/456/0.76
ModularSciFiSeason1 168/365/0.42 172/354/0.42 211/393/0.48

Lifelike
Urbanity

SuburbNeighborhoodDay 224/422/0.64 328/457/0.72 242/457/0.76
DowntownWest 296/460/0.78 317/456/0.76 292/469/0.86

Factory 278/434/0.64 291/452/0.74 249/435/0.64
Venice 295/441/0.70 323/448/0.82 294/474/0.84

Table 9. Quantitative evaluation results of the tracking agents across 4 different category environments with 4 distractors (4D), 8 distractors
(8D), and 10 distractors (10D) respectively. The table compares the performance of agents trained on different offline dataset settings: 1
Env. (single environment), 2 Envs. (two environments), and 8 Envs. (eight environments). Each cell presents three metrics from left to right:
Average Episodic Return (ER), Average Episode Length (EL), and Success Rate (SR).

Category Environment Name
1 Env.

ER/EL/SR
2 Envs.

ER/EL/SR
8 Envs.

ER/EL/SR

Compact
Interior

StorageHouse (4D) 117/343/0.40 181/375/0.52 190/428/0.62
StorageHouse (8D) 143/341/0.34 151/338/0.44 165/366/0.49

StorageHouse (10D) 81/324/0.36 109/331/0.42 107/357/0.50

Wildscape
Realm

DesertRuins (4D) 317/469/0.72 333/456/0.70 354/466/0.74
DesertRuins (8D) 213/406/0.50 316/445/0.58 267/444/0.68
DesertRuins (10D) 188/390/0.44 252/382/0.50 253/447/0.64

Palace
Maze

TerrainDemo (4D) 221/398/0.44 286/454/0.65 312/460/0.77
TerrainDemo (8D) 211/384/0.39 239/412/0.49 252/420/0.52

TerrainDemo (10D) 189/377/0.36 232/404/0.48 224/429/0.66

Lifelike
Urbanity

SuburbNeighborhoodDay (4D) 192/407/0.46 256/381/0.50 265/392/0.60
SuburbNeighborhoodDay (8D) 131/325/0.36 229/369/0.48 247/385/0.56
SuburbNeighborhoodDay (10D) 162/355/0.44 180/340/0.40 165/376/0.44

Table 10. Cross-platform evaluation on active visual tracking task
Platform ThreeDWorld Real World

EL/SR AD/IoU
1 Env. 377/0.65 764/328
8 Envs. 493/0.8 833/393

Figure 9. The CQL loss curve during offline training with different
offline datasets.



Figure 10. The learning curves for RL-based navigation agent in
two environments: Roof and Factory. We use A3C [3] to learn the
navigation policy via trial-and-error interactions. In the Factory
(blue line plot), the number of asynchronous workers is set to 4,
while in the Roof environment (orange line plot), the number of
asynchronous workers is set to 6.

ThreeDWorld Real World Deployment

Figure 11. From left to right: 1)We utilize ThreedWorld as the
comparison simulator and use its built-in agent “Magnebot” as the
target, evaluating the active tracking performance. 2) We deploy
our trained policy in wheel-based robot with distractors, evaluating
the active tracking performance.
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