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A. More Experiment Result

Ablation studies in more detailed results. Here, we
present the detailed results of the main ablation experi-
ments, as shown in Tab. 1. The table includes the overall
accuracy and accuracy across eight different match types.
Our method significantly improves accuracy over a strong
baseline (45.83 vs. 32.38) across six match types. The im-
provement is less pronounced for the size (SZ) match type,
where accuracy is approaching saturation (76.62 vs. 74.03).
CoLVA on the other base model. We combine CoLVA
into Qwen2VL and test it on several general benchmarks,
as shown in Tab. 2. CoLVA still works better.
Analysis on Different Match Types. From detailed re-
sults of Tab. 4, MLLMs work better in matching based on
object size (SZ), shape (SP), and textual or LOGO mark-
ers (TM). These three types require focusing solely on the
object itself, indicating that current MLLMs possess profi-
cient object-level perception and understanding. In contrast,
MLLMs find it more challenging to match based on ob-
ject relative position (RP), object orientation and movement
(OO), and binding relationships with other objects (BR).
These require MLLMs to understand the interrelationships
between objects and infer information that remains invari-
ant across time and space.
CoLVA Failure Cases Analysis. We have observed that
CoLVA tends to fail when performing matching in densely
populated object scenarios, as illustrated in Fig. 1. One rea-
son for this is that CoLVA is prone to hallucinations regard-
ing the query object in multi-object, multi-image contexts.
For instance, in the left example of Fig. 1, CoLVA correctly
identifies the query object as a player. However, in the sec-
ond image, it mistakenly hallucinates object-7, which is ac-
tually a horse, as the matched player. Additionally, in multi-
view scenarios, CoLVA is susceptible to incorrectly match-
ing another object based on partial information of the query
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GT Answer: J. Object-10
CoLVA:
The object marked with a cyan contour in the first image 
corresponds to option G (7) in the second image. I made the 
choice of option G (7) because in both images, the object with 
the cyan contour is the player wearing number 7 on their jersey. 
The cyan contour highlights the same player in both images, 
confirming that option G (7) is the correct match.

GT Answer: H. Object-8
CoLVA:
The object marked with a cyan contour in the first image 
matches object 2 in the second image, which is a person 
wearing a red top and dark pants.
Therefore, the correct answer is:
B. 2

Figure 1. The failure cases of CoLVA on MMVM benchmark.
CoLVA tends to fail when performing matching in densely popu-
lated object scenarios.

Figure 2. Potential real-world applications of CoLVA

object from a single viewpoint.

B. More information on MMVM Benchmark

The MMVM benchmark is composed of the validation split
from the video segmentation datasets (790 samples) and
manually collected internet videos (720 samples). Addi-
tionally, the benchmark is not generated using the auto-
mated annotation pipeline employed for the training set, as
it only requires matching results without the need for rea-
soning processes.

We categorize the 790 samples as the in-domain part, and
the 720 samples as the out-domain part. Tab. 3 displays the
test results of several methods on these two parts, which re-
vealing that our CoLVA model achieves a significant gain in
the out-domain segment (41.67 vs 13.89), thereby demon-
strating its robust generalization capability.
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Table 1. The effectiveness of our methods and MMVM data with detailed results. Data denotes using the combination of MMVM data
and LLaVA SFT data. OCL denotes object-level contrastive learning. VE denotes fine-grained vision expert. IA denotes instruction
augmentation. OA denotes the overall accuracy.

Data OCL VE IA OA CL SP TM SZ RP OO BR OM

17.62 14.73 34.48 17.76 15.58 10.28 24.00 31.25 21.30
✓ 32.38 25.04 24.14 32.71 74.03 19.00 35.20 43.18 36.57
✓ ✓ 34.05 25.78 26.77 31.97 75.01 22.32 35.29 42.98 37.51
✓ ✓ 32.25 24.22 27.59 31.78 68.83 19.14 35.20 40.34 39.35
✓ ✓ ✓ 40.45 33.72 44.85 39.37 75.33 30.00 48.00 38.65 44.78
✓ ✓ ✓ ✓ 45.83 38.30 31.03 41.12 76.62 41.71 51.20 39.77 46.76

Table 2. The impact of Qwen2VL-CoLVA on general benchmarks.

MLLM CoLVA MME MME POPE BLINK
perception reasoning Overall Overall

Qwen2VL-2B × 1471.10 404.64 86.83 44.50
✓ 1540.14 418.57 88.01 46.98

Table 3. The split of MMVM benchmark.

Method Total In-domain split Out-domain split

GPT4o 42.65 46.46 38.47
InternVL2-4B 17.62 21.01 13.89

CoLVA-4B 49.87 57.22 41.67

C. Potential real-world applications of CoLVA

Object matching is fundamental to many real-world ap-
plications, such as video object tracking, re-identification
(ReID), multi-image visual question answering (VQA), and
video VQA. Our CoLVA also integrates visual prompt un-
derstanding capabilities. In Fig. 2, we showcase several
real-world applications.

D. More Implementation Details

More training details. Our model comprises three com-
ponents: a pre-trained MLLM InternVL2-4B [2], a fine-
grained vision expert RADIO [20], and a RADIO adapter.
We adopt Xtuner [3] codebase to implement our method.
We maintain the original architecture of both InternVL2-
4B and RADIO, while the RADIO adapter is implemented
using a two-layer MLP. Our training includes two stages:
pre-training and supervised fine-tuning (SFT). We freeze
the MLLM and RADIO during the pre-train stage, focus-
ing solely on training the RADIO Adapter. During the SFT
stage, we freeze the RADIO, the RADIO adapter, and all
components of InternVL2-4B except the LLM. The LLM
of the MLLM is trained by applying LoRA [5].

During the pre-training phase, we sample 500k images
with segmentation labels from SA1B [6]. For each im-
age, we apply augmentations such as Crop, Resize, Flip,

and Rotation to simulate a pseudo video. We then sample
two frames from this pseudo video to serve as our training
samples. Taking InternVL2 [2] as the base model and RA-
DIO [20] as the vision expert, we input one image into the
InternVL2 visual encoder and the other into RADIO. When
selecting the (anchor, positive, negatives) triplet, the anchor
is chosen from the image features output by RADIO, while
the positive and negatives are selected from the image fea-
tures output by the InternVL2 visual encoder. We perform
full training from scratch on the RADIO adapter using only
object-level contrastive loss.

In the fine-tuning phase, we apply instruction augmenta-
tion to the original 220k MMVM data samples using object-
level representations. Consequently, we utilize a total of
440k MMVM data samples during fine-tuning. When us-
ing Qwen2VL [25] as the base model, to reduce sequence
length and decrease computational resource requirements,
we scale the long edge of all images to 1024 pixels and pad
the short edge to 1024 pixels.
Inference details. When performing inference on the
MMVM benchmark, we integrate CoLVA into the MLLMs.
For inference on general VQA benchmarks, we maintain
the MLLMs’ original architecture and load the LLM pa-
rameters trained with CoLVA.

E. More visualization results
More PCA visualizations. In Fig. 3, we present additional
PCA visualizations. The results reveal that the matched tar-
get (represented by a red dot) and other candidate objects
(represented by blue dots) are clustered together, while be-
ing distant from the query object (represented by a red star).
This clustering pattern makes it challenging for InternVL2
to distinguish the correct object. In contrast, our CoLVA
brings the matched target and the query object closer to-
gether while distancing them from other candidate objects.
This indicates that our CoLVA has learned fine-grained and
discriminative visual features, which are beneficial for vi-
sual matching tasks.
More challenging test cases of our MMVM. Here, we
present more examples from the MMVM benchmark,



which features diverse scenes and presents significant chal-
lenges, as illustrated in Fig. 4. In particular, our MMVM
contains extremely small objects.

F. Further Discussion
Future works. We have argued the fine-grained visual per-
ception and logical reasoning ability of MLLMs in the main
paper. We give a more detailed description here.

The former means the MLLMs must understand various
scale objects well, where detailed information, such as ob-
ject parts, remote objects, and thin objects, play a critical
role in perception. Thus, equipping MLLMs with dense
perception ability and visual prompts [7, 11, 21, 30, 31] is
needed.

The latter means that MLLMs must have instance-aware
understanding and can perform visual comparisons [19].
With this ability, MLLMs can distinguish various objects
and perform visual reasoning. This is why we adopt con-
trastive loss during the pre-training stage.

In addition, automatically collecting more high-quality
supervised fine-tuning data is another way to boost
MLLMs.
Board impact. Our works explore one fundamental lim-
itation of current SOTA MLLMs: visual correspondence
shortcomings. We present a new benchmark: MMVM, a
training dataset, and a new training framework, CoLVA, to
improve the visual correspondence in MLLM models. Our
work will raise the attention of visual correspondence in
MLLM design and inspire research on cross-image VQA
tasks and fine-grained VQA tasks.



Table 4. More MMVM Benchmark results. Accuracy is the metric, and the overall accuracy is computed across all 1,510 evaluation
samples. The accuracy for each of the eight match types is calculated separately on their respective samples. The full term of the match
type abbreviation can be found in the main text. For MLLMs that only support single-image input, we simply concatenate all the images
vertically into one image and then input it.

Model Size Method Overall CL SP TM SZ RP OO BR OM

∼4B

InternVL2-2B [2] 9.87 9.66 6.90 10.28 10.39 8.28 11.20 10.80 8.80
xGen-MM-v1.5-4B [26] 13.50 10.47 17.24 18.69 25.97 6.71 19.20 17.61 16.20
VILA1.5-3B[14] 15.36 10.96 6.89 19.62 29.87 9.57 20.80 19.30 18.98
Qwen2-VL-2B-Instruct [25] 15.69 13.42 20.69 17.75 31.16 9.57 22.40 18.75 16.67
Ovis1.6-Llama3.2-3B [18] 16.62 13.09 20.69 20.56 33.77 9.28 22.40 21.59 20.83
DeepSeek-VL-1.3B [17] 16.82 12.60 13.79 18.69 37.66 10.43 22.40 21.59 17.59
InternVL2-4B [2] 17.62 14.73 34.48 17.76 15.58 10.28 24.00 31.25 21.30

4B∼13B

Chameleon-7B [23] 10.07 9.49 17.24 14.95 11.69 6.86 9.60 13.07 10.65
Cambrian-13B [24] 10.72 9.32 6.89 9.34 23.37 6.28 16.00 15.34 7.87
Mini-Gemini-7B-HD [12] 13.18 10.80 10.34 14.95 25.97 8.28 14.40 18.18 13.89
LLaVA-NEXT-13B [16] 13.77 8.35 10.34 10.28 22.08 7.57 22.4 22.73 18.52
LLaVA1.5-13B [15] 14.04 11.78 13.79 14.02 31.17 7.57 20.00 18.18 14.35
MiniCPM-V2.5-8B [27] 14.11 10.80 17.24 13.08 31.17 6.28 24.00 20.45 17.13
Monkey-7B [13] 14.43 13.09 6.89 14.01 31.16 7.85 17.60 18.18 15.74
VILA1.5-13B [14] 14.70 13.91 13.79 13.08 36.36 7.57 22.40 17.04 15.74
Slime-13B [32] 14.83 11.29 6.89 16.82 32.46 9.00 18.40 21.02 17.59
mPLUG-Owl3-7B [28] 16.22 14.07 20.68 16.82 31.16 8.57 20.80 20.45 19.90
InternVL2-8B [2] 16.89 13.58 20.69 22.43 24.68 11.57 24.00 23.30 18.52
VITA-8*7B [4] 17.42 14.57 13.79 23.36 29.87 10.57 24.80 22.16 20.37
DeepSeek-VL-7b [17] 17.68 14.24 17.24 20.56 35.06 10.00 22.40 25.00 23.61
Ovis1.6-Gemma2-9B [18] 17.75 17.68 17.24 15.89 32.47 12.14 20.00 19.32 18.98
LLaVA-Next-Interleave-7B [10] 19.34 15.88 41.38 15.89 41.56 10.71 19.20 23.30 27.78
LLaVA-OneVision-ov-7B [9] 20.92 16.69 17.24 25.23 31.16 14.28 22.40 30.68 25.92
Qwen2-VL-7B-Instruct [25] 27.48 24.87 37.93 30.84 62.33 17.85 28.00 28.97 31.94

13B∼40B

Yi-VL-34B [29] 11.26 9.49 17.24 18.69 12.99 7.57 9.60 15.34 11.57
Eagle-X5-34B-Chat [22] 13.84 10.47 13.79 13.08 27.27 7.86 23.20 18.18 14.81
LLaVA-Next-34B [16] 15.03 11.29 20.69 16.82 32.47 8.71 21.6 19.89 17.13
VILA1.5-40B [14] 15.36 14.73 20.69 14.95 36.36 5.00 22.40 18.18 17.13
InternVL2-40B [2] 26.03 24.88 41.38 33.64 42.86 16.86 31.20 31.82 31.02

40B∼

Idefics-80B-instruct [8] 13.58 11.13 13.79 14.95 24.68 7.00 20.80 17.61 13.89
InternVL2-76B [2] 25.83 24.06 31.03 30.84 40.26 19.28 31.20 30.11 31.02
LLaVA-OneVision-ov-72B [9] 29.34 28.48 34.48 26.17 55.84 21.14 28.00 34.66 32.41
InternVL2.5-78B [1] 36.42 35.02 37.93 38.32 58.44 25.86 38.40 39.20 43.98
Qwen2-VL-72B-Instruct [25] 38.08 37.64 44.83 42.06 64.94 32.28 36.00 35.80 39.81

Unkown
Claude3-5V-Sonnet 40.20 34.21 41.38 56.07 77.92 34.86 40.00 32.39 40.28
GeminiPro1-5 40.73 36.00 44.83 44.86 74.02 35.14 44.80 38.07 38.42
GPT4o-20240806 42.65 39.28 65.52 60.75 67.53 32.28 44.00 43.18 50.00

2B CoLVA-Qwen2VL-2B (Ours) 47.48 40.92 31.03 47.66 68.83 50.57 49.60 33.52 38.42
4B CoLVA-InternVL2-4B (Ours) 49.80 43.21 41.38 45.79 77.92 44.43 53.60 44.89 53.24
7B CoLVA-Qwen2VL-7B (Ours) 51.06 42.72 37.93 49.53 80.52 46.43 52.80 47.73 49.54



Figure 3. More PCA visualizations of learned object embeddings by InternVL2-4B and our CoLVA-4B. The object embeddings are
obtained by applying average pooling to the visual tokens using mask annotations. The red star represents the query object in the first
image. The red dot represents the matched target in the second image. The blues dots represent other candidates.
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Figure 4. More challenging test cases of our MMVM benchmark, where each row shows cases of different match types.
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