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A. Discussions

To better understand our work, we supplement with the following question-answering.

Q1. What makes Nexus stand out compared to driving simulators?

Current simulators [10, 27] rely on hand-crafted rules, thus struggling with complex, out-of-scope scenarios. Generating
corner cases requires manually positioning attack vehicles and adjusting traffic responses, making large-scale closed-loop
adversarial scene generation impractical. While adversarial attacks [61] can create scenarios, log-replayed environmental
agents lack realism and fail to ensure attack validity. In contrast, Nexus proposes a scalable, user-friendly approach for
realistic and controllable hazard scenario generation. It leverages diffusion models to capture vehicle interactions, ensuring
realism. Our method requires only goal points for the ego and attack vehicles, easily defined as lane center points, enabling
efficient large-scale scenario expansion. Details of scene generation are in Appendix D.3.

Q2. What is the definition of safety-critical scenarios and how to ensure they are realistic and feasible?

Defination. A safety-critical scenario is a situation where one or more vehicles collide with the ego vehicle, which is rare
to collect in real-world datasets like nuPlan. We utilize CAT [61] to generate risky behaviors from logged scenarios to ensure
the reality and feasibility of training data, which uses a data-driven motion prediction model that predicts several modes of
possible trajectories of each traffic vehicle. Please refer back to [61] for a detailed description of safety-critical scenarios.

Rationality of goal conditioning. Nexus emphasizes goal-controlled scenario generation, as it enables the convenient
and scalable creation of collision-prone corner cases. Given the trajectory of the target agent, an attack can be easily executed
by setting the attacker’s goal to a future waypoint of the target agent. Nexus’s design incorporates scenario interactions to
enhance the realism of collisions.

Evaluation. Evaluating the quality of generated corner cases scientifically is a well-recognized challenge in academia.
Our preliminary attempt combines quantitative and qualitative assessments. We use goal-driven kinematic metrics to measure
trajectory authenticity, where Nexus excels, and ensure generated scenarios meet industry-standard corner cases [12, 54] like
cut-ins, sudden braking, and collisions (see Fig. 11 for more visualizations).

Q3. Broader impact. What are potential applications and future directions with the provided Nexus-data and the Nexus
model, for both academia and industry?

Datasets. Nexus-Data collects massive data from simulators, significantly enhancing the layout diversity of driving sce-
narios. This dataset provides the community with high-quality resources for studying complex agent interactions, multi-agent
coordination, and safety-critical decision-making in autonomous driving.

Models. Beyond data augmentation, we believe our model can also drive broader applications within the community.
This work showcases Nexus’s potential as both a closed-loop world generator and a data engine. It could be adapted for
downstream tasks, such as closed-loop training of autonomous driving agents [38]. Our model presents a promising gener-
ative world model, providing an alternative to traditional rule-based simulators. Please note that our model will be publicly
released to benefit the community and can be further fine-tuned flexibly according to custom data within the industry.

Negative societal impacts. The potential downside of Nexus could be its unintended use in generating counterfeit driving
scenarios due to the hallucination issues that may arise with diffusion models. We plan to introduce rule-based validation
mechanisms, such as collision consistency checks, kinematic feasibility constraints, and behavioral plausibility tests, to filter
out unrealistic generated scenarios. Besides, we plan to regulate the effective use of the model and mitigate possible societal
impacts through gated model releases and monitoring mechanisms for misuse.

Q4. Limitations. What are the issues with current designs and corresponding preliminary solutions?

Visual synthesis is necessary for current end-to-end models in autonomous driving. Yet, datasets with visual data [41]
are still much less abundant compared to those containing only driving logs [3]. Nexus currently lacks visual generation,
limiting its use in applications requiring realistic sensor data, such as perception model training and end-to-end learning for
autonomous vehicles.

However, as a work exploring how to incorporate world generators with generative models, the primary focus of this
work is the decoupled diffusion for adaptive scene generation. Future work may integrate Nexus with neural radiance fields
(NeRFs)[35] for high-fidelity 3D scene synthesis or video diffusion models[1, 60] for temporally consistent video generation,
enabling full visual simulation of dynamic driving scenarios. This would allow Nexus to generate scenarios with both rich
agent behaviors and realistic visual information, improving the training of end-to-end models as a world model.



Table 6. Behavior distribution statistics. Proportion (%) of agent behaviors in the dataset, excluding keeping forward. Our collected data
provides a more balanced distribution for lane changes.

Dataset
Time Inter. Left Right L. Lane R. Lane

U-Turn Stop
(Hrs) Passing Turn Turn Change Change

nuScenes [2] 5.5 13.1 18.0 10.2 5.0 2.5 0.0 4.1
nuPlan [3] 1.2K 13.8 1.5 1.6 14.4 14.6 0.9 46.8
Nexus-Data 540 35.3 1.7 2.5 22.2 23.3 1.2 10.0

B. Nexus-Data

B.1. Layout Diversity Highlights
We applied handcrafted rules to analyze behavior distributions in nuScenes [2], nuPlan [3], and our Nexus-Data shown in
Tab. 6. For brevity, we omit the proportion of normal forward driving. Beyond forwarding, turning, and stopping, our dataset
demonstrates greater diversity in lane-changing scenarios. Fig. 8 visually displays the top-down views of various dangerous
driving scenarios, including collisions, quick stops, and reckless merging.

B.2. License and Privacy Considerations
All the data is under the CC BY-NC-SA 4.0 license1. Other datasets (including nuPlan [41], Waymo Open [49],
Metadrive [27]) inherit their own distribution licenses. We only distribute lane geometries and vehicle trajectories, ensuring
compliance with dataset licenses and removing personally identifiable information to prevent privacy risks.

C. Implementation Details of Nexus

C.1. Model Design
As shown in Tab. 7, the Nexus architecture is built upon SimpleDiffusion [16]. The model uses rotary embedding for position
encoding, which is based on both physical time and denoising steps simultaneously. The backbone incorporates four layers
of TemporalBlock and SpatialBlock, enabling the model to capture temporal and spatial dependencies through attention and
feedforward layers. The Global Encoder uses Perceiver IO [22] for map feature extraction. The final output is projected
through a linear layer.

C.2. Training Details
Nexus is trained over 1200 hours of real-world driving logs from the nuPlan dataset [3] and 480 hours of collected data
from the simulator [27]. The training data consists of 10-second driving logs sampled at 2Hz, resulting in 21 frames per
sequence (4 historical, 1 current, and 16 future frames). The dataset includes 528K scenarios, each covering a 104-meter
range. Training on Waymo [49] used 531K scenes, each lasting 9 seconds, sampled at 2Hz, with 2 historical frames, 1 current
frame, and 16 future frames. The training task follows a denoising diffusion process, where random noise is added to each
agent token across the entire sequence. The model is then trained to recover the original sequence, learning to reconstruct
motion trajectories under noisy conditions.

We train the model for 80K iterations on 8 GPUs with a batch size of 1024 with AdamW [33]. The initial learning rate
is 1 × 10−3. We use a learning rate scheduler with a warm-up and cosine decay strategy. After the warm-up, the learning
rate will gradually decrease according to a cosine function. The default GPUs in most of our experiments are NVIDIA Tesla
A100 devices unless otherwise specified.

C.3. Sampling Details
Classifier guidance for human-behavior alignment. Diffusion models can generate unrealistic driving scenarios due to
randomness, requiring human-guided constraints to enhance scene quality. As shown in Fig. 9, we consider three human-
behavior rubrics: 1) Collision avoidance: At each step t, if two vehicles’ bounding boxes overlap, they are pushed apart along
their center-connecting line. It can be written as the following equation:

1https://creativecommons.org/licenses/by-nc-sa/4.0/deed.en



Figure 8. Various safety-critical layouts from Nexus-Data. All scenarios are initialized by the nuPlan [3] and generated by adversarial
interactions [61] within simulators.
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where λt is a scalar coefficient used to control the extent of separation at time t. I is an indicator function that takes the value
1 when the bounding boxes of vehicle i and vehicle j overlap and 0 otherwise. B is the function used to form the vehicle’s



Table 7. Architecture of the Nexus Model.

Component Details

Top-Level Model LightningModuleWrapper

Main Model Nexus
Diffusion Backbone SimpleDiffusion
Cross Attention LayerNorm (256) + MultiHeadAttention
Attention Projection Linear(256, 256)
Input Projection Linear(25, 256)
Timestep Embedder Linear(256, 256) + SiLU + Linear(256, 256)

Backbone Structure CombinedAttention with TemporalBlock & SpatialBlock
TemporalBlock LayerNorm(256)→MultiHeadAttention(256)

→ LayerNorm(256)→ FeedForward MLP
→ SiLU + Linear(256, 1536) (AdaLN Modulation)

SpatialBlock LayerNorm(256)→MultiHeadAttention(256)
→ LayerNorm(256)→ FeedForward MLP
→ SiLU + Linear(256, 1536) (AdaLN Modulation)

MultiHead Attention Linear(256, 256) with Dropout(0.0)
FeedForward MLP Linear(256, 1024) + GELU + Linear(1024, 256)
Final Normalization LayerNorm(256)
Output Projection Linear(256, 8)

Global Encoder PercieverEncoder
Cross Attention LayerNorm(7) + MultiHeadAttention(256)
Self-Attention 2x SelfAttention Blocks

Other Modules MapRender, NaivePlanner

Comfort On-road DrivingCollision Avoidance

Figure 9. Classifier guidance with human-behavior alignment. The three different constraints are applied at each sampling step,
contributing to the realism of the generated scenario.

bounding box. The fractional term represents the unit direction vector of the centerline between vehicle i and vehicle j.
2) Comfort: Enforcing smooth longitudinal and lateral accelerations by averaging adjacent trajectory points.

fcomfort(x
t, t) =
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First, the longitudinal and lateral accelerations at are approximated using the second-order difference at time τ and
smoothed by averaging adjacent trajectory points. Then, the trajectory is refined by subtracting a proportion lambdat of
the acceleration, reducing abrupt speed changes for smoother motion.

3) On-road driving: Pull the vehicle toward the nearest centerline point when it strays too far.
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The vehicle identifies the closest lane point cti among all points c ∈ RL×N×D by minimizing the Euclidean distance using
argminl,n. When the deviation exceeds the threshold dth, the vehicle adjusts its position by moving from xt

i,loc toward the
closest centerline point cti, with the adjustment magnitude controlled by λt.
Sampling. The sampling process is inherited from SimpleDiffusion [16]. It starts with random Gaussian noise and is
performed by Denoising Diffusion Implicit Models (DDIM) [47] for 32 steps. For classifier guidance [45], we set the total
value of λ for the three constraints to be 0.2. If more than two constraints are active simultaneously, the value of λ will be
evenly distributed among them. The sampling speed is 206 milliseconds per step per batch.

D. Experiments
We conduct extensive experiments on multiple datasets to evaluate the performance of our method. Our baseline is built on
a reproduced full-sequence training Diffusion Policy [6]. For comparison convenience, we trained two models on the nuPlan
and Nexus-Data datasets, respectively, namely Nexus-Full and Nexus, adopting the same training strategy.

D.1. Protocols and Metrics
ADE: It measures the average displacement differences between the generated and ground truth trajectories, excluding goal
points and invalid trajectory points from the calculation.
Rroad: It measures the off-road rate of vehicles in the generated scenes. Off-road instances are detected by checking whether
a vehicle’s center deviates from its assigned centerline at each timestep. The rate is calculated as the number of vehicles that
have gone off-road divided by the total number of valid vehicles.
Rcol: It measures the collision rate among agents in the generated scenes. Collisions are detected by checking for overlaps
between agent bounding boxes at each timestep. The rate is calculated as the number of collided vehicles divided by the total
number of valid vehicles.
Mk: It measures the stability of generated trajectories using the average of four metrics: tangential and normal acceleration
along the heading at each timestep and their derivatives (jerk). Lower values indicate smoother and more comfortable
trajectories.
Composite Metric: It is a comprehensive metric for evaluating the realism of scene generation. During evaluation, the model
generates a scene 32 times based on a 1-second history, forming a distribution. The likelihood between this distribution and
the ground truth is then computed across factors like speed, distance, and collisions.
Score, Scol, and Sp: It is the main metric for assessing the reasonableness of agent planning trajectories in the nuPlan closed-
loop evaluation. The metric considers comfort, collisions, road adherence, lane changes, and mileage completion, scoring
1 for success and 0 for failure per scenario. Scol and Sp are sub-metrics measuring trajectory collision rate and distance
completion rate, respectively.

D.2. Evaluation Tasks
Free exploration. This task conditions the past 2 seconds of all vehicle states and lane centerlines from the nuPlan driving
log to freely generate an 8-second future scene at a 0.5-second time interval. In the generation process, the noise level
of each token is determined by the scheduling strategy. Invalid vehicles at the corresponding timestep are ignored. In the
experiments, we used off-the-shelf IDM [56] and GUMP [17], as well as our implementations of Diffusion Policy [6] and
SceneDiffuser [25].
Conditioned generation. On top of free exploration, goal points are added to valid vehicles by setting the token’s noise level
at that timestep to 0 during inference.
Waymo open sim agent evaluation. The Waymo evaluation requires generating 32 future scene predictions based on 1
second of historical observations, including vehicles, pedestrians, and cyclists. The evaluation is conducted at 10Hz, and we
interpolate the 2Hz model to match the required scene frequency.
Closed-loop evaluation. In the nuPlan closed-loop evaluation, the environment and agent are treated separately. The agent
predicts an 8-second trajectory based on 2 seconds of historical observations and takes 0.1-second actions. The environment



Figure 10. More visualizations of Nexus on free exploration and conditioned generation.

updates the scene based on the agent’s actions, running at 10Hz. In the experiment using the generative model as a world
generator, we replace the original nuPlan environment. Starting with a 2-second historical scene, it generates and updates
the next scene (0.1 seconds ahead) based on the agent’s actions. In the experiment using synthetic data to augment the
planner, we train the agent with different amounts of synthetic and real data and then evaluate it in the nuPlan closed-loop
environment.

D.3. Generation of Novel Scenarios

Nexus can serve as a data engine to automatically generate new scenarios in batches. Specifically, we use the first two
seconds of nuPlan raw logs as initial conditions and generate new scenarios through free exploration, conditioned generation,
and attacks on the ego vehicle. For attack-based scenario generation, we follow a similar approach to Sec. 3.3 to select
attacking vehicles. For goal point selection, we define a sector along the historical trajectory direction of a chosen attack
vehicle, with the sector’s radius determined by speed and an angle α. The future positions of other vehicles within this sector
represent highly probable goal points that could lead to a collision. During generation, we maintain a 4:4:2 ratio among the
three types of scenario data to ensure a balanced distribution of scenarios.



Figure 11. Applications of Nexus for generating diverse corner cases in autonomous driving.

Figure 12. Leveraging neural radiance fields to provide realistic visual appearances for scenes generated by Nexus. On the left is the
bird’s-eye-view layout, and on the right is the rendered scene.

D.4. Qualitive Results

Thanks to the decoupled diffusion structure, Nexus can transition among free exploration, conditioned generation, and di-
verse corner case synthesis seamlessly, enabling adaptive scene generation. Moreover, leveraging the neural rendering field
(NeRF) [55], Nexus transforms generated traffic layouts into photorealistic scenes, enabling controllable visual synthesis.
Free exploration and conditioned generation. Fig. 10 showcases Nexus’s versatility in generating driving scenarios. The
first two rows depict free exploration, where decoupled noise states enable diverse traffic layouts without explicit condition-



Figure 13. Failure cases of Nexus.

ing, capturing complex interactions and behaviors. The last row illustrates conditioned generation, where low-noise target
tokens guide scene evolution toward goal states (green flags), enhancing controllability and reactivity while maintaining
realism.
Diverse corner case generation. As shown in Fig. 11, Nexus generates diverse corner cases, including abrupt cut-ins, sudden
braking, and potential collisions. This strengthens Nexus’s utility for training robust autonomous systems.
Controllable visual rendering with NeRF integration. Fig. 12 showcases NeRF-based rendering, converting Nexus-
generated layouts into photorealistic scenes. The left panel depicts the bird’s-eye view, while the right presents the rendered
scene, demonstrating controllable visual synthesis for interactive simulations and closed-loop evaluation.

D.5. Failure Cases
Fig. 13 illustrates Nexus failure cases. The two left cases show incorrect collisions: one between a bus and a sedan and another
with overlapping bounding boxes. The two right cases highlight the model’s difficulty in making decisions in complex road
networks due to limited map information. Future improvements will include adaptive collision awareness and the addition of
road boundaries and drivable areas to address these issues.




