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Appendix

A. More Qualitative Results

Figs. A to C presents additional qualitative results of our
method. Fig. A showcases our method’s effectiveness and
flexibility in graphic design applications. The example
demonstrates how DreamRenderer can generate distinct de-
sign variations with only little input modifications. In the
top design, we generate an orange bold "Dream Big!” text
in the center, and with just a small modification to the
text prompt from “Dream Big!” to two different color
text prompts (orange “Dream” and blue “Renderer”), our
method generates an entirely new variant (bottom).

As shown in Fig. B, we tackle the challenging task of
simultaneously generating multiple specified person. Gen-
erating seven distinct person while maintaining consis-
tent identity and appearance is particularly difficult, as
it requires the model to understand and preserve individ-
ual characteristics across different poses and viewpoints.
Our method successfully generates natural-looking results
where not only is the identity consistently maintained across
all instances, but the generated images also precisely align
with the provided depth conditions. This demonstrates
our model’s robust capability in handling complex multi-
instance person generation tasks.

B. More Results on COCO-POS Benchmark

Fig. D presents the qualitative results of our method com-
pared with FLUX [3] and 3DIS [35] on both depth-guided
and canny-guided generation. As shown in the figure, our
DreamRenderer consistently outperforms both FLUX and
3DIS, particularly when generating multiple instances. In
the depth-guided scenarios (top rows), our method accu-
rately preserves the spatial relationships indicated in the
depth maps while ensuring that each instance’s attributes

are correctly rendered according to the textual descriptions.
The baseline methods struggle with attribute entanglement,
often generating instances with incorrect colors, patterns, or
other visual characteristics.

For the more challenging canny-guided generation (bot-
tom rows), the performance gap is even more pronounced.
While FLUX and 3DIS frequently produce instances with
misaligned attributes or distorted appearances, our method
maintains attribute fidelity even with minimal structural
guidance from canny edges. This demonstrates the ef-
fectiveness of our Hard Text Attribute Binding mecha-
nism, which ensures each instance’s text embedding cor-
rectly binds with its corresponding visual features during
the generation process.

Notably, our method achieves these improvements with-
out compromising image quality. The generated images
exhibit clear details, natural textures, and coherent global
compositions, demonstrating that our Image Attribute
Binding approach successfully preserves the model’s inher-
ent rendering capabilities while enhancing attribute control.

C. More Results on COCO-MIG Benchmark

Fig. E, Fig. F, Fig. G, and Fig. H present comparative results
obtained by applying DreamRenderer to re-render outputs
from various layout-to-image methods. The red boxes indi-
cate that all methods exhibit challenges in attribute binding
to varying degrees.

GLIGEN [9], one of the earliest methods with layout
control, shows the most severe attribute confusion, often
generating objects with incorrect colors or patterns and
struggling with spatial consistency. InstanceDiffusion [21]
improves instance separation but still struggles with at-
tribute binding across multiple instances, and notably suf-
fers from lower visual quality with blurry textures and less
detailed renderings. MIGC [33] produces high-resolution
results but frequently fails to adhere to depth conditions
properly, and often generates images with overly saturated
colors and unrealistic brightness. Even the most advanced



method 3DIS [35] exhibits significant attribute binding er-
rors when handling multiple instances with similar cate-
gories but different properties.

Our DreamRenderer consistently enhances performance
across all methods by ensuring accurate attribute binding
while preserving image quality. The improvements be-
come more pronounced when controlling multiple similar
instances with different visual properties, confirming our
method’s effectiveness in addressing attribute entanglement
regardless of the underlying architecture.

D. More Results on Hard Text Attribute Bind-
ing

Fig. I demonstrates the effectiveness of our Hard Text At-
tribute Binding mechanism. The naive approach generally
preserves basic attributes but suffers from severely degraded
image quality with noticeable artifacts. The model without
Hard Text Attribute Binding produces visually appealing
images but frequently fails to correctly bind text attributes
to the generated content, resulting in misaligned visual el-
ements. In contrast, our full model with Hard Text At-
tribute Binding achieves both high image quality and accu-
rate attribute preservation. Comparing the three approaches
side by side, we observe that our method successfully ad-
dresses the limitations of both alternative approaches, de-
livering consistent text-image alignment without compro-
mising visual fidelity.

E. Limitations

Despite the significant advancements achieved by Dream-
Renderer in multi-instance generation control, several limi-
tations persist. For canny-guided generation, our method’s
performance is less robust compared to depth-guided gen-
eration, primarily constrained by the capabilities of the un-
derlying FLUX-Canny model, as evidenced by the results
in body part’s Tab. 1. Furthermore, we observe a substan-
tial decrease in the success ratio as the number of controlled
instances increases, a phenomenon particularly pronounced
in canny-guided generation, where the success rate drops
from 23.28% with two instances to considerably lower val-
ues with additional instances. Although the Hard Text At-
tribute Binding mechanism significantly improves attribute
binding accuracy, the attribute entanglement issue remains
not fully resolved when handling complex scenes with mul-
tiple overlapping instances, indicating room for further im-
provement in this domain.

We would like to acknowledge several prior works that
inspired this work [1-8, 8, 10-20, 22-36].
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1) Decorative element: a feather 2) A paper with text “Dream Big!” in a bold, hand-painted orange font with a fiery,

energetic style, letters slightly uneven for a dynamic feel; 3) A black apple logo 4) Decorative element: a moon
v "

1) Decorative element: feathers 2) A paper with text “Dream” in a bold, hand-painted orange font with a fiery,
energetic style, letters slightly uneven for a dynamic feel; 3) A paper with text “Renderer” in a bold, hand-painted
blue font with a fiery, energetic style, letters slightly uneven for a dynamic feel; 4) Decorative element: shiny stars

Figure A. Qualitative results of our method on multi-instance design generation. (§ A) Our model enables efficient design iterations
with precise control, enabling designers to explore multiple design layout by only little input modifications.
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“many famous people in black suit are standing together. 1) Barack Obama 2) Pirates of the Caribbean 3) Audrey Hepburn 4) Elon Musk 5) Taylor Swift 6)
Girl with brown hair & sunglasses 7) Bruce Lee

Figure B. Qualitative results of our method on multi-instance person generation. (§ A) Our model successfully generates 7 different
persons simultaneously, which is a notably challenging task in image generation. The results demonstrate consistent identity preservation
across all instances while maintaining natural appearance variations. Each generated image accurately follows the corresponding depth
condition, showing our model’s ability to handle complex spatial relationships and viewpoint variations.
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1) A bolt of lightning 1) A bolt of lightning 1) A bolt of purple lightning
2) Ice-covered frozen 2) White Jade building 2) Building crafted from
building 3) A weathered stone wall chrome and reinforced glass
3) A gray wall with natural wear marks 3) a sleek metallic wall

4) a golden multi-tiered 4) A multi-tiered pagoda- 4) A futuristic multi-tiered
pagoda-style building style building. pagoda-inspired skyscraper

Figure C. Qualitative results of our method on different architecture style generation. (§ A) Our model successfully generates images
with the same layout input, demonstrating its versatility in capturing and reproducing diverse artistic styles.
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Figure D. Qualitative comparison with FLUX and 3DIS on depth-guided (top) and canny-guided (bottom) generation. (§ A) Our
method produces images with more accurate attributes and better visual quality, while baseline methods often exhibit color and pattern
inconsistencies with text prompts.



GLIGEN

a white laptop

Figure E. Additional qualitative comparison on the COCO-MIG benchmark. (§ A) We show more results of re-rendering on GLI-
GEN [9]. We highlight with red boxes the areas where the compared method exhibits noticeable attribute generation errors.
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Figure F. Additional qualitative comparison on the COCO-MIG benchmark. (§ A) We show more results of re-rendering on In-
stanceDiffusion [21]. We highlight with red boxes the areas where the compared method exhibits noticeable attribute generation errors.
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Figure G. Additional qualitative comparison on the COCO-MIG benchmark. (§ A) We show more results of re-rendering on
MIGC [33]. We highlight with red boxes the areas where the compared method exhibits noticeable attribute generation errors.
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Figure H. Additional qualitative comparison on the COCO-MIG benchmark. (§ A) We show more results of re-rendering on 3DIS [35].
We highlight with red boxes the areas where the compared method exhibits noticeable attribute generation errors.
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Figure 1. Ablation study on the Hard Text Attribute Binding mechanism. (§ D) Top: Results from the naive approach, which maintains
basic attribute correctness but produces poor image quality with significant artifacts. Bottom: Results without hard text binding, showing
good visual quality but frequent attribute binding failures. Results from our full model, demonstrating both high-quality image generation
and accurate text attribute binding. The comparison highlights how our method effectively balances visual quality and text-prompt adher-
ence.
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