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6. Additional experimental results

This section presents additional experimental results
demonstrating the efficacy of our method in visual vibrom-
etry applications.

6.1. Audio recovery under different lighting

The high dynamic range (HDR) characteristic of event cam-
eras enables event-based visual vibrometry to operate ef-
fectively under ambient illumination conditions. To ana-
lyze the performance of our method under varying illumi-
nation levels, we record one speaker playing a chirp sig-
nal at four distinct brightness levels, ranging from 400 lux
to 3200 lux. For comparison of the frame-based method,
we simultaneously capture the speaker with a high-speed
video camera at 1000 fps and recover audio signals using
the visual microphone (VM) technique [2]. The signal re-
construction quality is evaluated using the segmental signal-
to-noise ratio (SSNR). As shown in Tab. 4, our method
achieves more robust performance across different lighting
conditions. Notably, the performance of our method un-
der low illumination (400 lux) is comparable to that of the
frame-based method under high illumination (3200 lux).

Table 4. Signal reconstruction SSNR (the higher the better) com-
parison under different lighting conditions.

Method 400Ilux 800Iux 16001lux 3200 lux
VM [2] 0.31 0.38 0.89 2.25
Ours 3.75 4.48 4.51 4.65

6.2. Analyzing vibration of tuning forks

We analyze the vibrations of two tuning forks with funda-
mental frequencies of 128 Hz and 256 Hz, respectively. As
shown in Fig. 7, we strike the forks with a rubber-tipped
mallet and measure their vibrations. The spectrograms ob-
tained by our method accurately reflect the fundamental fre-
quencies of the tuning forks. In contrast, EBVM fails to
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Figure 7. Vibration analysis of two tuning forks with fundamen-
tal frequencies of 128Hz and 256Hz (a). We compare recovered
spectrograms between our method (b) and EBVM [5] (c). The re-
sults obtained using our method align well with the fundamental
frequencies of the tuning forks.

recover these fundamental frequencies, potentially due to
noise in the event signal under ambient lighting conditions.

6.3. Material properties with unknown geometry

We demonstrate the applicability of our method in learn-
ing the material properties of objects with unknown geom-
etry. The experiments on material property estimation, as
detailed in the main manuscript, rely on precise knowledge
of the object’s geometry. As a result, their potential appli-
cation is limited to objects with simple geometries that can
be precisely measured, or to man-made structures with de-
tailed CAD models, for which resonant frequencies can be
obtained through the finite element method (FEM).

Given a set of objects with similar but not precisely mod-
eled geometries, the differences in their material proper-
ties will be revealed in their resonant frequencies and mode
shapes. Based on this intuition, Davis et al. propose to learn
relationships between motion spectra and the material prop-
erties of objects with similar but unknown geometry. They
conducted experiments on a dataset comprising 30 hang-
ing fabrics [1], along with corresponding ground truth mea-
surements of area weight. Following their work, we simu-
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Figure 8. Comparison of extracted motion spectra and predic-
tions on material properties estimated from videos [3] (upper) and
events (below) on the fabric dataset [1]. The Pearson correlation
values (R) are shown in the figure.

late corresponding events with the V2E simulator [4] from
videos captured by a grayscale Point Grey camera at 60 fps.
From the simulated events, we extract motion spectra us-
ing our proposed method. Consistent with the methodology
in [3], we employ the motion spectra directly as features
and train a Partial Least Squares Regression model to map
the motion spectra to the logarithm of the ground truth area
weight. Due to the small size of the dataset, we employ
the leave-one-out cross-validation strategy. The extracted
motion spectra and area weight prediction results obtained
from our method and from videos are presented in Fig. 8.
The Pearson correlation values (R) of our predictions are
slightly lower than those of the frame-based method. Note
that the data size of our simulated events (16-bit Prophe-
see EVT 3.0 format) is less than 10% that of the original
videos, indicating that the vibrations are efficiently encoded
in the simulated events. Considering the reduced data size,
we believe the minor performance drop is acceptable.

7. Discussion

7.1. Thresholds’ impact on vibration sensing

For frame-based cameras, the accuracy of vibration estima-
tion depends on bit depth and quantum efficiency in noise-
free conditions. Correspondingly, the precision of subtle
motion estimation from event data is affected by the con-
trast threshold. The threshold of event cameras generally
exceeds one gray level in images, resulting in a lower the-
oretical precision for event-based visual vibrometry, espe-
cially in scenarios involving extremely low-amplitude vi-

bration measurements. Intuitively, lowering the threshold
would trigger more event signals, thereby improving motion
extraction accuracy. Nevertheless, due to current hardware
constraints, event cameras are more susceptible to noise at
lower thresholds. Despite this hardware limitation, experi-
mental results demonstrate that our method achieves satis-
factory performance across many applications. Future hard-
ware advancements will further improve the precision of
event-based visual vibrometry.

7.2. Inference frequency

The time step for voxel partitioning is primarily determined
by the vibration frequency of the observed object. Specif-
ically, the Nyquist frequency of the motion estimation re-
sults should exceed the target frequency range. The compu-
tational overhead of our method increases linearly with the
number of voxels. At a resolution of 256 x256, the overall
running time for each step of the coarse motion optimiza-
tion and subsequent network refinement on our test system
is approximately 0.04s.

We evaluate the quality of audio recovered from the se-
quence capturing a speaker playing the “MarySpeech” au-
dio file used by Davis et al. [2] under 4 distinct inference
frequencies: 1000, 2000, 4000, 6000Hz. The intelligibil-
ity (STOI) scores are [0.481, 0.513, 0.524, 0.523] (higher
is better). Increasing the inference frequency expands the
detectable vibration spectrum, thereby enhancing signal re-
construction fidelity. However, this concurrently reduces
the event signal density per voxel, which may affect the pre-
cision of micro-vibration estimation. Correspondingly, the
STOI scores exhibit an initial ascent followed by a plateau.
In our experiment, we set the inference frequency slightly
above the target frequency range.

7.3. Temporsal filtering

Previous motion magnification studies typically employ
temporal filtering to select motion within specific frequency
bands of interest using a band-pass filter. Temporal filtering
helps to prevent noise from being magnified, but it requires
prior knowledge of the observed vibration. In contrast, our
method usually aims to analyze vibrations across a broad
frequency spectrum. To mitigate noise in subtle motion es-
timation, our approach employs a reference image and ex-
ploits the temporal structure inherent in event data, which is
extracted through a recurrent event encoder, thereby effec-
tively suppressing isolated noise events.

7.4. Dynamic scenes

When the observed object undergoes global motion, it is
more challenging to detect subtle vibrations. Following
previous studies [2, 3], our method assumes that the ob-
served object remains static, exhibiting only tiny vibrations.
Under this assumption, our approach utilizes only one im-
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Figure 9. We capture a speaker that is manually grasped and
shaken. (a) The reference frame. (b) The spectrogram of the input
signal sent to the speaker. (c) Event signals at another timestamp.
(d) The spectrogram of our recovered sound.

age to provide scene texture information and is inapplicable
to dynamic scenes. To evaluate our method on non-static
scenes, we conduct an experiment where a speaker is man-
ually grasped and shaken. As shown in Fig. 9, the spec-
trogram of the recovered signal reveals a performance drop
when the speaker is shaken. Future works could track the
object’s macro-motion using both frames and events, and
dynamically update the reference frame.

References

[1] Katherine L Bouman, Bei Xiao, Peter Battaglia, and
William T Freeman. Estimating the material properties of fab-
ric from video. In Proc. of IEEE International Conference on
Computer Vision, 2013. 1, 2

[2] Abe Davis, Michael Rubinstein, Neal Wadhwa, Gautham J.
Mysore, Frédo Durand, and William T. Freeman. The vi-
sual microphone: passive recovery of sound from video. ACM
Transactions on Graphics, 33(4):79:1-79:10, 2014. 1, 2

[3] Abe Davis, Katherine L Bouman, Justin G Chen, Michael
Rubinstein, Oral Biiyiikoztiirk, Frédo Durand, and William T
Freeman. Visual Vibrometry: Estimating material properties
from small motions in video. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 39(4):732-745, 2017. 2

[4] Yuhuang Hu, Shih-Chii Liu, and Tobi Delbriick. V2E: From
video frames to realistic DVS events. In Proc. of IEEE/CVF
Conference on Computer Vision and Pattern Recognition
Workshops, 2021. 2

[5] Ryogo Niwa, Tatsuki Fushimi, Kenta Yamamoto, and Yoichi
Ochiai. Live demonstration: Event-based visual microphone.
In Proc. of IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops, 2023. 1



	Additional experimental results
	Audio recovery under different lighting
	Analyzing vibration of tuning forks
	Material properties with unknown geometry

	Discussion
	Thresholds' impact on vibration sensing
	Inference frequency
	Temporal filtering
	Dynamic scenes


