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In the main paper, we propose ExterNal knowledGe IN-
jEction (ENGINE) for CLIP-based CIL. To enhance knowl-
edge transfer from outside the dataset, we propose a dual-
branch injection tuning framework that encodes informative
knowledge from both visual and textual modalities. The vi-
sual branch is enhanced with data augmentation to enrich
the visual features, while the textual branch leverages GPT-
4 to rewrite discriminative descriptors. In addition to this
on-the-fly knowledge injection, we also implement post-
tuning knowledge by re-ranking the prediction results dur-
ing inference. With the injected knowledge, the model can
better capture informative features for downstream tasks as
data evolves.

In this supplementary material, we provide more details
about ENGINE, including more implementation details and
experimental results.

• Section I introduces further analysis of ENGINE, in-
cluding multiple runs, running time comparison, train-
able parameter analysis, results of different backbones
and different LLMs, and other baselines.

• Section II introduces the details of compared methods.

• Section III provides supplementary results of bench-
mark datasets to the main paper.

• Section IV provides more visualizations, including the
visualization of prediction results and generated tex-
tual descriptions.

I. More results

This section includes more results on ENGINE, including
the results with multiple runs using different random seeds,
the details about trainable parameters, running time com-
parison, results with different pre-trained weights, and re-
sults with different LLMs to generate textual descriptions.

†Correspondence to: Han-Jia Ye (yehj@lamda.nju.edu.cn)
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Figure 1. Results on ImageNet-R B0 Inc20 with multiple runs.
ENGINE consistently outperforms other methods by a substan-
tial margin.

I.1. Multiple Runs

In the main paper, the experimental results are conducted
via splitting the classes with random seed 1993, which is
a common practice in CIL [6]. To investigate the robust-
ness of different methods, we also consider running the
experiments multiple times using different random seeds.
Specifically, we conduct the class split using random seed
{1993,1994,1995,1996,1997}, and calculate the average
performance and standard variance. We report the results
in Figure 1 on ImageNet-R B0 Inc20.

As shown in the figure, ENGINE shows more robust re-
sults against other baselines. We find the results of ENGINE
consistently outperform other competitors in multiple runs.

I.2. Trainable parameters

In this paper, we design ENGINE by extending knowledge
injection unit per task. During inference, the injected fea-
tures are aggregated as the final feature. As illustrated in
Section 4.1 of the main paper, we can reparameterize these
injection units by adding the weights since they are linear
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Table 1. Number of trainable parameters on CIFAR100 B0 Inc10
setting.

Method Trainable Parameters

L2P 161330
DualPrompt 333412
CODA-Prompt 3916900
RAPF 262144
ENGINE 524288

layers, i.e.,
∑

p u
p
i and

∑
p u

p
t . Hence, the extra parameter

size can be squeezed from 2× b× d× d to 2× d× d. We
further report the number of trainable parameters in each
compared method in Table 1. As we can infer from the
table, ENGINE has the same scale of trainable parameters
compared to other competitors, while having the best per-
formance.

I.3. Running Time Comparison
In this section, we report the running time comparison of
different methods. We utilize a single NVIDIA 4090 GPU
to run the experiments and report the results in Figure 2. As
we can infer from the figure, ENGINE requires less running
time than CODA-Prompt and RAPF, while having the best
performance. Experimental results verify the effectiveness
of ENGINE.
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Figure 2. Running time comparison. ENGINE has similar train-
ing time to other compared methods while having the best per-
formance.

Besides, the post-tuning process can be directly sped up
with simple modifications. Specifically, we pre-compute
the one-to-one text pairs and generate all corresponding text
embeddings in advance. Assuming there are 100 classes
and each pair contains n distinct descriptions, the total num-
ber of embeddings amounts to approximately 99×100×n.
As a result, we only need to compute the descriptions in ad-
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Figure 3. Experiments when using OpenAI weights on UCF B0
Inc10. ENGINE consistently outperforms other methods with
various backbone weights.

vance and subsequently retrieve the pre-calculated embed-
dings during inference, significantly reducing the computa-
tional overhead.

I.4. Different backbones
In the main paper, we mainly consider CLIP with ViT-B/16
under LAION400M pre-trained weight [3]* to conduct the
experiments. In this section, we also provide the results
with OpenAI pre-trained weight† on UCF B0 Inc10 in Fig-
ure 3. As we can infer from the figure, ENGINE consistently
outperforms other methods with various backbone weights.

I.5. Different LLMs
In the main paper, we mainly utilize GPT-4o mini to gen-
erate the class descriptions. Since ENGINE is a general
framework that is compatible with various LLMs, we con-
sider Qwen2.5-72B [1] as the LLM to generate class de-
scriptions, and conduct experiments on Food B0 Inc10. We
report the comparison between GPT-4o mini and Qwen2.5-
72B in Figure 4.

As shown in the figure, we find the performance results
using different LLMs are quite similar, indicating the ro-
bustness of ENGINE when using different LLMs.

II. Introduction About Compared Methods
In this section, we introduce the details of the compared
methods adopted in the main paper. For a fair comparison,
all methods are based on the same pre-trained model. The
details of the compared methods in Table 1 are listed as:

• Finetune: with a pre-trained CLIP as initialization, it
finetunes CLIP for every new task. Hence, it suffers
severe catastrophic forgetting on former tasks.

*https://github.com/mlfoundations/open clip
†https://github.com/openai/CLIP
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Figure 4. Results on Food B0 Inc10 with different LLMs for
text description. ENGINE is robust and compatible with vari-
ous LLMs.

• CoOp [13]: This approach freezes both the image en-
coder and text encoder of the pre-trained CLIP. It op-
timizes a learnable prompt tensor t using contrastive
loss.

• SimpleCIL [11]: This method relies on the pre-trained
image encoder and does not involve the text encoder.
Hence, in the pre-trained CLIP, we drop the text branch
and only use the visual branch for evaluation. The
frozen image encoder extracts class centers (proto-
types) for each new class, and a cosine classifier is uti-
lized for classification. Since the model is not updated
via backpropagation, it showcases the generalizability
of the pre-trained vision encoder on downstream tasks.

• ZS-CLIP [5]: This baseline freezes the pre-trained
CLIP and predicts the logits of each incoming class
using cosine similarity. It serves as a reference for the
performance of pre-trained CLIP on downstream tasks.

• L2P [9]: This method only involves the visual branch
of CLIP. During model updating, it freezes the pre-
trained weights and utilizes visual prompt tuning [4] to
trace the new task’s features. It builds instance-specific
prompts with a prompt pool, which is constructed via
key-value mapping.

• DualPrompt [8]: is an extension of L2P, which ex-
tends the prompt into two types, i.e., general and expert
prompts. The other details are kept the same with L2P,
i.e., using the prompt pool to build instance-specific
prompts. This method only involves the visual branch
of CLIP.

• CODA-Prompt [7]: noticing the drawback of
instance-specific prompt selection, it aims to elimi-
nate the prompt selection process by prompt reweight-
ing. The prompt selection process is replaced with an

attention-based prompt recombination. This method
only involves the visual branch of CLIP.

• RAPF [2]: aims to enhance the continual learning
ability of CLIP. It combines the hard class separation
loss and decomposed parameter fusion to encode new
knowledge into the CLIP model.

The above methods are exemplar-free, which do not re-
quire using exemplars. We also compare some exemplar-
based methods in Table 2 of the main paper as follows:

• iCaRL [6]: This method only involves the visual
branch of CLIP. It utilizes knowledge distillation and
exemplar replay to recover former knowledge. It also
utilizes the nearest center mean classifier for final clas-
sification.

• MEMO [10]: This method only involves the visual
branch of CLIP. It decouples the network structure
into specialized (deep) and generalized (shallow) lay-
ers and extends specialized layers based on the shared
generalized layers. Hence, the memory cost for net-
work expansion decreases from a whole backbone to
generalized blocks. In the implementation, we fol-
low [10] to decouple the vision transformer at the last
transformer block.

• PROOF [12]: aims to enhance CLIP’s continual learn-
ing ability by learning expandable projection layers
and cross-modal fusion module. The prototypes of his-
torical visual and textual features are passed through
the cross-modal fusion for further matching.

In the experiments, we reimplement the above methods
based on their source code and PyCIL‡.

III. Full Results
In this section, we show more experimental results of differ-
ent methods. In the main paper, we only report three typical
learning trends among compared methods. In this section,
we report the full results corresponding to Table 1 of the
main paper. Specifically, we report the incremental perfor-
mance of different methods with 0 base classes in Figure 5
and half base classes in Figure 6. As shown in these results,
ENGINE consistently outperforms other methods on differ-
ent datasets and different data splits by a substantial margin.

IV. More Visualizations
IV.1. Adjusted predictions
In this section, we provide more visualizations of the effect
of post-tuning knowledge injection in Figure 7. As shown
in the figure, post-tuning efficiently adjusts the predictions
of the model to highlight the ground truth class.

‡https://github.com/G-U-N/PyCIL
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(a) Aircraft Base0 Inc10
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(b) CIFAR100 Base0 Inc10
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(c) Cars Base0 Inc10

50 100 150 200
Number of Classes

60

70

80

90

100

A
cc

ur
ac

y 
(%

) 3.2

ZS-CLIP
SimpleCIL
L2P

DualPrompt
CODA-Prompt

RAPF
ENGINE

(d) ImageNet-R Base0 Inc20
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(e) CUB Base0 Inc20
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(f) UCF Base0 Inc10

50 100 150 200 250 300
Number of Classes

60

70

80

90

100

A
cc

ur
ac

y 
(%

)

2.83

ZS-CLIP
SimpleCIL
L2P

DualPrompt
CODA-Prompt

RAPF
ENGINE

(g) SUN Base0 Inc30
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(h) Food Base0 Inc10
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(i) ObjectNet Base0 Inc20

Figure 5. Incremental performance of different methods on B0 setting. We report the performance gap after the last incremental stage of
ENGINE and the runner-up method at the end of the line. All methods utilize the same CLIP pre-trained weight.

IV.2. Generated descriptions
In this section, we give examples of the generated descrip-
tions of class-wise discriminative features. We give the ex-
amples on CIFAR100:

Camel versus cattle:

Q: What are unique visual features of camel com-
pared to cattle in a photo? Focus on their key vi-
sual differences.
A: Camel: 1. Tall, humped back which distin-
guishes it from cattle. 2. Long legs and a pro-
portionally longer neck, giving a different silhou-
ette. 3. Typically covered in coarse fur, often
light brown or beige. 4. Feet have padding for

desert terrains, contrasting with cattle’s hooves.
5.Can often be seen with a distinctive gait, differ-
ing from the more sturdy stance of cattle.
Cattle: 1. Large, bulky bodies with short legs. 2.
Varying coat colors from black to brown to white.
3. Prominent horns on some breeds, depending
on gender. 4. Large, expressive eyes with long
eyelashes. 5. Commonly seen grazing in fields or
pastures.

Shark versus ray:

Q: What are unique visual features of shark com-
pared to ray in a photo? Focus on their key visual
differences.
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(a) Aircraft Base50 Inc10
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(b) CIFAR100 Base50 Inc10
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(c) Cars Base50 Inc10
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(d) ImageNet-R Base100 Inc20
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(e) CUB Base1000 Inc20
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(f) UCF Base50 Inc10
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(g) SUN Base150 Inc30
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(h) Food Base50 Inc10
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(i) ObjectNet Base100 Inc20

Figure 6. Incremental performance of different methods on half-base setting. We report the performance gap after the last incremental
stage of ENGINE and the runner-up method at the end of the line. All methods utilize the same CLIP pre-trained weight.

A: Shark: 1.Streamlined body with a pointed
snout and sharp teeth. 2. A dorsal fin prominently
displayed on the top.3. Pelvic fins and pectoral
fins that assist in maneuvering. 4.Typically gray
or blueish skin, often with a lighter belly. 5. Can
be shown swimming in a sleek, powerful posture.
Ray: 1. Flattened body shape with a broad, disc-
like structure. 2. Long, pointed snout extending
from the disc. 3. Wing-like pectoral fins that ex-
tend outwards. 4. Short tail that may have a spine
or barb. 5. Coloration often varying from gray to
brown.

Bed versus couch:

Q: What are unique visual features of bed com-
pared to couch in a photo? Focus on their key
visual differences.
A: Bed: 1.Typically rectangular shape, varying in
size. 2. Soft, cushioned surface with a mattress.3.
Often has a headboard or footboard. 4.May in-
clude bedding such as blankets and pillows. 5.
Primarily found indoors in a home setting.
Couch: 1. Large, upholstered furniture piece with
a soft seating area. 2. Typically consists of cush-
ions that vary in firmness. 3. Often rectangular
or L-shaped in design. 4. Can have armrests and
back support, with decorative fabric. 5. Used in
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Figure 7. Left: Input. Middle: Top-5 predictions before post-tuning knowledge injection. Right: Top-5 predictions after post-tuning.
More cases are shown in the supplementary.



living rooms or lounges, contrasting a flat surface.

We also give the examples on ImageNet-R:
Harp versus electric guitar:

Q: What are unique visual features of harp com-
pared to electric guitar in a photo? Focus on their
key visual differences.
A:Harp: 1.Large, triangular frame with a curved
top and vertical strings. 2. Tall and elegant, often
made of wood.3. Strings are arranged in a straight
line from top to bottom, creating tension. 4.Ped-
als at the base for changing pitch on certain types.
5. Generally features ornate carvings and a pol-
ished finish.
Electric guitar: 1. Solid body with a distinctive
curvy or pointed shape. 2. Strings visible on top
along a long neck, attached to a circular body.
3.Often has pickups, knobs, and frets, creating
a complex visual profile. 4. Typically made of
wood with a shiny finish and various colors. 5.
Centered around sound production through elec-
trical means unlike the strings of a harp that are
different in construction.

Pizza versus burrito:

Q: What are unique visual features of pizza com-
pared to burrito in a photo? Focus on their key
visual differences.
A: Pizza: 1.Flat, round shape with a raised
crust along the perimeter. 2. Visible layers of
toppings, sauce, and cheese creating a colorful
appearance.3. Often has a glossy sheen from
melted cheese, unlike the matte finish of a burrito.
4.Slices that can show a variety of ingredients and
color contrasts. 5. No wrapping it is served open-
faced, showcasing toppings, unlike a burrito.
Burrito: 1. Cylindrical shape wrapped in a soft,
flat tortilla. 2. Often showcases a colorful mixture
of fillings (rice, beans, meat). 3.Typically closed
at both ends, contrasting with pizza open slices. 4.
Appears larger and thicker than a typical slice of
pizza. 5. Topping textures hidden within, rather
than spread across the surface.
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