A. Implementation Details

In this section, we present the benchmarks, evaluation met-
rics and the relevant contents we used in the main paper
to facilitate a comprehensive understanding of our model’s
performance. This overview will help contextualize our re-
sults and provide clarity on how we assessed the effective-
ness of our approach.

A.1. Benchmarks

In our main paper, we conduct experiments across three
popular text-to-image datasets.

Pick-a-Pic. Pick-a-Pic [23] is an open dataset designed to
collect user preferences for images synthesized from text
prompts. The dataset is gathered through a user-friendly
web application that allows users to synthesize images and
select their preferences. Each data sample includes a text
prompt, two synthesized images, and a label indicating
which the user prefers or a tie if there is no clear preference.
The Pick-a-Pic dataset contains over 500,000 examples cov-
ering 35,000 unique prompts. Its advantage lies in the fact
that the data comes from real users, reflecting their genuine
preferences rather than relying on paid crowd workers

DrawBench. DrawBench is a newly introduced bench-
mark dataset designed for in-depth evaluation of text-to-
image synthesis models. It contains 200 carefully crafted
prompts categorized into 11 groups, testing the models’
abilities across various semantic attributes, including com-
positionality, quantity, spatial relationships, and handling
complex text prompts. The design of DrawBench allows
for a multidimensional assessment of model performance,
helping researchers identify strengths and weaknesses in
image synthesis. By comparing with other models, Draw-
Bench provides a comprehensive evaluation tool for the
text-to-image synthesis field, facilitating a deeper under-
standing of synthesis quality and image-text alignment.

HPD v2. The Human Preference Dataset v2 [53] is a
large-scale, cleanly annotated dataset focused on user pref-
erences for images synthesized from text prompts. It con-
tains 798,090 binary preference choices involving 433,760
pairs of images, aiming to address the limitations of exist-
ing evaluation metrics that fail to accurately reflect human
preferences. HPD v2 eliminates potential biases and pro-
vides a more comprehensive evaluation capability, with data
sourced from multiple text-to-image synthesis models and
real images.

GenEval. GenEval, an object-focused T2I benchmark to
evaluate compositional image properties such as object
co-occurrence, position, count, and color, contains 553
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Figure 6. Paradigms of text prompt learning (left) and noise
prompt learning (right).
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prompts in total. This dataset plays a pivotal role in ad-
vancing research in text-to-image synthesis by providing a
structured means to assess how well images align with the
descriptive content of accompanying texts.

T2I-CompBench. T2I-CompBench is a comprehensive
benchmark designed for evaluating the compositional capa-
bilities of text-to-image (T2I) models, focusing on aspects
such as object arrangement, relationships, and attributes
within synthesized images. This benchmark consists of a
diverse set of prompts that encompass various scenarios and
contexts, facilitating a thorough assessment of how well T21
systems can interpret and visualize complex textual descrip-
tions. By providing a structured framework for evaluation,
T2I-CompBench significantly contributes to the advance-
ment of research in T2I synthesis, offering insights into the
strengths and limitations of current models in generating co-
herent and contextually accurate images.

For testing, we use these four popular T2I datasets, in-
cluding the first 100 prompts subset from the Pick-a-Pic
web application, 100 prompts from HPD v2 test set, all 200
prompts from DrawBench, all 553 prompts from GenEval
and all test prompts in T2I-CompBench. The detailed infor-
mation of the test sets is shown in Fig. 18.

A.2. Evaluation Metrics

In our main paper, we mainly include 6 evaluation metrics
to validate the effectiveness of our NPNet.

PickScore. PickScore is a CLIP-based scoring function
trained from the Pick-a-Pic dataset, which collects user
preferences for synthesized images. It achieves superhuman
performance when predicting user preferences. PickScore
aligns well with human judgments, and together with Pick-
a-Pic’s natural distribution prompts, enables much more rel-
evant text-to-image model evaluation than evaluation stan-
dards, such as FID [13] over MS-COCO [27].
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Figure 7. Visualization results about re-denoise sampling. Re-
denoise sampling can help to inject semantic information of the
text prompt into the original Gaussian noise.

HPSv2. Human Preference Score v2 (HPSv2) is an
advanced preference prediction model by fine-tuning
CLIP [39] on Human Preference Dataset v2 (HPD v2). This
model aims to align text-to-image synthesis with human
preferences by predicting the likelihood of a synthesized
image being preferred by users, making it a reliable tool for
evaluating the performance of text-to-image models across
diverse image distribution.
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Figure 8. Visualization about the similarities between the singular
vectors of X7 and x/. Note that we take the absolute values of the
cosine similarity scores, and sort them reversely (the horizontal
axis represents the indexes of the singular vectors).

AES. Aesthetic Score (AES) [46] are derived from a
model trained on the top of CLIP embeddings with several
extra multilayer perceptron (MLP) layers to reflect the vi-
sual appeal of images. This metric can be used to evaluate
the aesthetic quality of synthesized images, providing in-
sights into how well they align with human aesthetic pref-
erences.

Residuals between original noise and inversion noise

Figure 9. Using re-denoising sampling, we actively enhance the
semantic information of the given prompt within the initial noise
to enhance the semantic alignment of the generated images. This
process is validated by the tight clustering of the residuals between
the original noises and the inversion noises, each prompt with 100
noises, demonstrating the semantic information within the inver-
sion noises.

ImageReward. ImageReward [55] is a human preference
reward model specifically designed for evaluating text-to-
image synthesis. It is trained on a large dataset of hu-
man comparisons, allowing it to effectively encode hu-
man preferences. The model assesses synthesized images
based on various criteria, including alignment with the text
prompt and overall aesthetic quality. ImageReward has
been shown to outperform traditional metrics like Incep-
tion Score (IS) [3] and Fréchet Inception Distance (FID) in
correlating with human judgments, making it a promising
automatic evaluation metric for text-to-image synthesis.

CLIPScore. CLIPScore [12] leverages the capabilities of
the CLIP model, which aligns images and text in a shared
embedding space. By calculating the cosine similarity be-
tween the image and text embeddings, CLIPScore provides
a mearsure of how well a synthesized image corresponds to
its textual description. While CLIPScore is effective in as-
sessing text-image alignment, it may not fully capture the
nuances of human preferences, particularly in terms of aes-
thetic quality and detail”.

MPS. Multi-dimensional Preference Score (MPS) [59],
the first multi-dimensional preference scoring model for
the evaluation of text-to-image models. The MPS intro-

2we follow https://github.com/jmhessel/clipscore
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duces the preference condition module upon CLIP model
to learn these diverse preferences. It is trained based on
the Multi-dimensional Human Preference (MHP) Dataset,
which comprises 918,315 human preference choices across
four dimensions, including aesthetics, semantic alignment,
detail quality and overall assessment on 607,541 images,
providing a more comprehensive evaluation of synthesized
images. MPS calculates the preference scores between two
images, and the sum of the two preference scores equals 1.

A.3. T2I Diffusion Models

In the main paper, we totally use 3 T2I diffusion models,
including StableDiffusion-x1 (SDXL) [37], DreamShaper-
x1-v2-turbo (DreamShaper), and Hunyuan-DiT (DiT) [25].

StableDiffusion-xl. StableDiffusion-x1 (SDXL) is an ad-
vanced generative model, building upon the original Stable
Diffusion architecture. This model leverages a three times
larger UNet backbone, and utilizes a refinement model,
which is used to improve the visual fidelity of samples syn-
thesized by SDXL using a post-hoc image-to-image tech-
nique. SDXL is designed to synthesize high-resolution im-
ages from text prompts, demonstrating significant improve-
ments in detail, coherence, and the ability to represent com-
plex scenes compared to its predecessors.

DreamShaper-xl-v2-turbo. DreamShaper-x1-v2-turbo, a
fine-tuned version on SDXL, is a text-to-image model de-
signed for high-quality image synthesis, focusing on faster
inference time and enhanced image synthesis capabilities.
DreamShaper-x1-v2-turbo maintains the high-quality image
output characteristic of its predecessor, while its turbo en-
hancement allows for quicker synthesis cycles. The overall
style of the synthesized images leans towards fantasy, while
it achieves a high level of authenticity when realism is re-
quired.

Hunyuan-DiT. Hunyuan-DiT is a text-to-image diffusion
transformer with fine-grained understanding of both En-
glish and Chinese. With careful design of the model archi-
tecture, it can perform multi-turn multimodal dialogue with
users to synthesized high-fidelity images, under the refine-
ment of the Multimodal Large Language Model.

A.4. Model Architecture

Our NPNet consists of two branches, one is singular value
prediction, and another is residual prediction.

For the singular value prediction branch, we processes
the decomposed SVD components through three parallel
MLP branches: one for the orthogonal matrix U, one for
V, and another for singular values s. Each branch contains
two linear layers with ReLU activation. We combine them
with a self-attention module to model global relationships,

followed by a residual MLP that adjusts the singular values
while retaining their original characteristics through skip
connections. The refined components are reconstructed via
matrix operations to produce the output. The detail of the
self-attention is illustrated in Fig. 11.

For the residual prediction branch, we employs a hybrid
architecture combining a pretrained Swin-Tiny transformer
with learnable up/down-sampling layers. The input is first
upsampled to 224x224 resolution, projected to 3 channels
via 1x1 convolution, then processed by the transformer’s
feature extractor. Features are downsampled to the original
resolution and projected back through another 1x1 convolu-
tion. An optional residual connection adds the input to the
refined output.

A.5. Hyper-parameter Settings

Our method is straightforward and intuitive, and the param-
eter settings for the entire experiment are also very sim-
ple, with epoch 30, and batch size 64 for all experiments.
During training, we surprise the obverse that randomly as-
signing one prompt to the whole samples in one batch can
yield a better model, where we speculate that such an op-
eration could be considered as a strong regularizer as in
Chen et al. [6]. We conduct experiments on three T2I dif-
fusion models, including SDXL, DreamShaper-x1-v2-turbo
and Hunyuan-DiT, with CFG w; 5.5, 3.5, and 5.0 respec-
tively. The inverse CFG w,, is 1.0 for all three models. To
collect training data, the inference steps are 10, 4, and 10
for SDXL with DDIM inverse scheduler, Dreamshaper-xI-
v2-turbo with DPMSolver inverse scheduler, and Hunyuan-
DiT with DDIM inverse scheduler, respectively. The human
preference model we use to filter the data is the HPSv2, and
the filtering threshold %k equals 0. Unless otherwise spec-
ified, all quantitative experiments and synthesized images
in this paper are conducted and synthesize with inference
steps 50, respectively. All experiments are conducted using
1x RTX 4090 GPUs, and all these noise pairs are collected
with inference step 10 to construct NPDs.

B. Related Work

Synthesizing images that are precisely aligned with given
text prompts remains a significant challenge for Text-to-
Image (T2I) diffusion models. To deal with this problem,
several works explore training-free improvement strategies,
by optimizing the noises during the diffusion reverse pro-
cess.

Lugmayr et al. [32] utilizes a pre-trained unconditional
diffusion model as a generative prior and alters the reverse
diffusion iterations based on the unmasked regions of the in-
put image. Hu et al. [19] proposes to denoise one more step
before the standard denoising process to eliminate the SNR
noise discrepancy between training and inference. Meng
et al. [34] observe that denoising the noise with inversion
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Figure 10. We evaluate our NPNet with 7 samplers on SDXL in Pick-a-Pic dataset, including both the deterministic sampler and stochastic
sampler (with a default inference step 50). “NPNet-30”” means the inference step is 30 with NPNet. The red area in the top left corner of
the image represents the results of efficient high-performance methods, while the experimental results of NPNet are nearly in that same
region. It highlights that NPNet is capable of synthesizing higher-quality images with fewer steps and consuming less time. Moreover, the
results demonstrate the generalization ability of our NPNet across different samplers.

Table 6. Generalization on different diffusion models. We train our NPNet with NPD collected from SDXL. We apply it directly to
DreamShaper-x1-v2-turbo on Pick-a-Pic dataset. Our results show promising performance, highlighting the model’s capability for cross-
model generalization.

Inference Steps PickScore (1) HPSv2 (1) AES (1) ImageReward (1)
4 Standard 21.57 29.02 5.9172 53.12
NPNet (ours) 21.62 29.20 5.9159 58.46
10 Standard 22.39 32.16 6.0296 96.67
NPNet (ours) 22.41 32.24 6.0320 97.92
30 Standard 2242 32.33 6.0116 98.97
NPNet (ours) 22.44 32.48 6.0054 100.18
50 Standard 22.41 32.12 6.0161 98.09
NPNet (ours) 22.47 32.25 6.0033 99.86
steps can generate better images compared with the origi- Table 7. Comparison results with InitNO on StableDiffusion-v1-

4 [41] on Pick-a-Pic dataset. We directly apply NPNet trained for

nal denoising process. Based on that, Qi et al. [38] aims
SDXL, and remove the embedding e to StableDiffusion-v1-4.

to reduce the truncate errors during the denoising process,
by increase the cosine similarity between the initial noise

PickScore (1) HPSV2 (1) AES (1) ImageReward (1)

and the inversed noise in an end-to-end way. It introduces Standard 1917 19.49 5.4575 12273
significant time costs, and the synthesized images may be InitNO 16.50 14.47 53116 -205.66
over-rendered, making it difficult to use in practical scenar- NPNet (ours) 152 9 S5 LB
ios.

Another research direction introduces extra modules to
help optimize the noises during the reverse process. Chefer
et al. [5] introduce the concept of Generative Semantic
Nursing (GSN), and slightly shifts the noisy image at
each timestep of the denoising process, where the seman-
tic information from the text prompt is better considered.
InitNO [11] consists of the initial latent space partioning
and the noise optimization pipeline, responsible for defin-
ing valid regions and steering noise navigation, respectively.
Such methods are not universally applicable, we discuss this
in Appendix C

this task as a learning problem. we directly learn to
prompt the initial noise into the winning ticket noise to ad-
dress this issue, by training a universal Noise prompt net-
work (NPNet) with our noise prompt dataset (NPD). Our
NPNet operates as a plug-and-play module, with very lim-
ited memory cost and negligible inference time cost, pro-
duce images with higher preference scores and better align-
Unlike previous approaches, we are the first to reframe ment with the input text prompts effectively.



class SVDNoiseUnet(nn.Module):
def _ init_ (self,
in_channels=in_channels,
out_channels=out_channels,
resolutionzresolution): # resolution = size // 8
super(SVDNoiseUnet, self)._ init_ ()

_in = int(resolution * in_channels // 2)
“out = int(resolution * out_channels // 2)
self.mlpl = nn.Sequential(

nn.Linear(_in, 64),

nn.ReLU(inplace=True),

nn.Linear(64, _out),

self.mlp2 = nn.Sequential(
nn.Linear(_in, 64),
nn.RelU(inplace=True},
nn.Llinear(64, _out),

self.mlp3 = nn.Sequential(
nn.Linear(_in, _out),

self.attention = Attention(_out)
self.bn = nn.BatchNorm2d(_out)

self.mlpd = nn.Sequential(
nn.Linear(_out, 10824),
nn.RelU(inplace=True),
nn.Linear(1224, _out),

)

def forward(self, x, residual=False):
b, ¢, h, w = x.shape
x = einops.rearrange(x, "b (a c)h w ->b (a h)(c w)", a=2,c=2)
U, s, V = torch.linalg.svd(x)
UT = U.permute(d, 2, 1
out = self.mlpl(U_T) + self.mlp2(V) + self.mlp3(s).unsqueeze(l)
out = self.attention(out).mean(1)
out = self.mlpd(out) + s
pred = U @ torch.diag_embed(out) @ V
return einops.rearrange(pred, "b (a h)(c w) -> b (a c) h w", a=2,c=2)

Figure 11. The implementation details of the self-attention module
in singular value prediction branch.
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Figure 12. The FID comparison with 5000 images in class-
conditional ImageNet with the resolution 512 x 512. The results
validate the effectiveness of our NPNet on improving the conven-
tional image quality metric.

C. Discussion with the Previous Works

We previously mentioned that these methods [5, 11, 16, 17,
471, optimize the noise during the reverse process by incor-
porating additional modules. These methods have shown
promising results in tasks involving compositional gener-
alization. However, these methods often struggle to trans-
fer to other datasets and models, making them not univer-
sally applicable. These approaches require the manual in-
terest subject tokens, necessitating extensive test to identify
the optimal tokens for a given sentence, which complicates
their application across different datasets. Furthermore,
modifying the model pipeline usually requires in-depth

code changes, making it difficult to achieve straightforward
plug-and-play integration with other models. Moreover,
these methods demand multiple rounds of noise optimiza-
tion during the reverse process, resulting in significant time
consumption.

In contrast, our approach addresses these challenges
from multiple perspectives, offering a more flexible and
universal solution. It is capable of cross-model and cross-
dataset applications, provides plug-and-play functionality,
and incurs minimal time overhead. We first follow the code
in Guo et al. [11], and manually provide the subject tokens
following Chefer et al. [S]. We conduct the experiments
on StableDiffusion-v1-4 [41] on Pick-a-Pic dataset. Note
that The authors did not provide the dataset or the necessary
subject tokens for the algorithm, so we are limited to using
our own dataset. Moreover, we had to manually select and
trim the objects in the prompts. Additionally, the author’s
code requires extensive modifications to the pipeline, mak-
ing it difficult to adapt for use with other diffusion mod-
els. We directly apply the NPNet trained for SDXL to
StableDiffusion-v1-4. The experimental results are shown
in Table. 7, demonstrating the superiority of our NPNet. In
addition, to prove that our method can be directly used in
conjunction with other noise optimization methods, we di-
rectly use the NPNet trained on SDXL on these mainstream
noise optimization methods, and the experimental results in
Table. 20 and Fig. 19 prove that our NPNet can further im-
prove the performance of other methods, which validates
the generalizability of our NPNet.

D. Additional Experiment Results
D.1. Motivation

To the best of our knowledge, we are the first to propose the
noise prompt learning framework, as illustrated in Fig. 6.
In order to transform the random Gaussian noise into the
golden noise, we utilize the re-denoise sampling, a straight-
forward method to boost the semantic faithfulness in the
synthesized images, illustrated in Fig. 7, to obtain the noise
pairs to construct our noise prompt dataset. Notably, in
Fig. 9, we validate that re-denoising sampling can enhance
the semantic information in the initial noise. When design-
ing the architecture of noise prompt network, we discover
the singular vectors between the source noise xr and tar-
get noise x/ exhibit remarkable similarity, albeit possibly
in opposite directions, as shown in Fig. 8. Building upon
this, we design the singular value prediction branch.

D.2. Exploration of Data Selection Strategies

Since the target noise collected through re-denoise sam-
pling is not always of high quality, it is crucial to choose
an appropriate method for data filtering. Effective selection
ensures that only high-quality noise pairs are used, which



Table 8. We evaluate the effectiveness of our NPNet on T2I-CompBench benchmark. The results validate the effectiveness of our method.

Method Attribute Binding Object Relationship Complex (1)
Color (1) Shape (1) Texture (1) 2D-Spatial (1) 3D-Spatial (1) Non-Spatial (1) numeracy (T)
Standard 0.5850 0.5028 0.5083 0.2097 0.3667 0.3113 0.5013 0.3130
Ours 0.5940 0.5094 0.5207 0.2146 0.3713 0.3151 0.5201 0.3174

is essential for training the NPNet, affecting the model’s
performance and reliability. For this reason, we conduct
experiments on the choice of human preference model to
filter our data, shown in Appendix Table 9, here the fil-
tering threshold m = 0. The results demonstrate that us-
ing HPSv2 ensures data diversity, allowing the filtered data
to enhance the model’s performance effectively. This ap-
proach helps maintain a rich variety of training samples,
which contributes to the model’s generalization ability and
overall effectiveness.

We also explore the influence under difference filtering
thresholds m, the results are shown in Appendix Table 10.
Our findings reveal that while increasing the filtering thresh-
old m can improve the quality of the training data, it also
results in the exclusion of a substantial amount of data, ul-
timately diminishing the synthesizing diversity of the final
NPNet.

D.3. Evaluate the Quality of Synthesized Images

To validate the quality of the synthesized images with our
NPNet, we calculate the FID® of 5000 images in class-
conditional ImageNet with the resolution 512 x 512 on
SDXL, shown in Appendix Fig. 12. Note that we just
synthesize the “fish” class in the ImageNet dataset, whose
directory ids are [n01440764, n01443537, n01484850,
n01491361, n01494475, n01496331, n01498041]. The
main fish class contains sub-class labels, including “tench”,
“Tinca tinca”, “goldfish”, “Carassius auratus”, “great white
shark”, “white shark”, “man-eater”, “man-eating shark”,
“Carcharodon carcharias”, “tiger shark”, “Galeocerdo cu-
vieri”, “hammerhead”, “hammerhead shark”, “electric ray”,
“crampfish”, “numbfish”, “torpedo”, “stingray”. Each time,
we randomly choose one prompt with postfix “a class in Im-
ageNet”, in order to synthesize ImageNet-like images. The
results reveal that with our NPNet, the T2I diffusion models
can synthesize images with higher quality than the standard

ones.

D.4. Evaluate the probability density of synthesized
images with NPNet

We visualize image distributions before and af- ter NPNet
by generating 50 images under identical conditions, using
ImageNet images (1 class) as ground truth and text-to- im-

3We follow the code in https://github.com/GaParmar/
clean-fid

age SDXL for generation in Fig. 13. The experimental re-
sults show the use of NPNet, which enables the generated
images to more closely resemble the real distribution, and
more inclined to high-density reigons.

Feature Distribution Density (TSEN Projection)
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Figure 13. We visualize image distributions before and af-
ter NPNet by generating 50 images under identical conditions,
using ImageNet images (1 class) as ground truth and text-to-
image SDXL for generation. While text-to-image (v.s. class-
conditioned) generation may induce distribution shifts, NPNet
shifts generation toward high-density regions.

D.5. Generalization and Robustness

In this subsection, we provide more experiments to validate
the generalization ability and robustness of our NPNet.

Generalization to Models, Datasets and Inference Steps.

In Appendix Table 6, we directly apply the NPNet for
SDXL to DreamShaper-x1-v2-turbo without fine-tuning on
the corresponding data samples. Even so, our NPNet
achieves nearly the best performance across arbitrary infer-
ence steps, demonstrating the strong generalization capa-
bility of our model. Besides, we also present the winning
rate of DreamShaper-xI-v2-turbo and Hunyuan-DiT across
3 different datasets, as presented in Appendix Fig. 14.
These experimental results indicate that our method has a
high success rate in transforming random Gaussian noise
into winning noise, highlighting the effectiveness of our ap-
proach.
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Table 9. To collect valuable samples, we explore the data selection with different human preference models on SDXL with inference steps
10 on Pick-a-Pic dataset.“Standard*” here means no human preference model is applied.

Method Filter Rate PickScore (1) HPSv2 (1) AES () ImageReward (1)
Standard* - 21.21 25.95 5.9608 40.47
PickScore 34.28% 21.23 25.90 5.9750 32.56

HPSv2 23.88% 21.24 26.01 5.9675 42.47

AES 47.62% 21.22 25.83 5.9636 43.23
ImageReward 35.02% 21.2139 25.70 5.9580 32.39
PickScore+HPSv2 41.93% 21.23 25.75 5.9514 38.59
PickScore+ImageReward 52.57% 21.14 25.97 5.9936 42.19
All 74.41% 21.21 25.95 5.9608 40.47

Table 10. Experiments on the HPSv2 filtering threshold. We conducted experiments on SDXL on Pick-a-Pic dataset to investigate the
impact of adding a threshold during the filtering process, like so +m < s, where s and s, are the human preference scores of denoising
images x¢ and xg.

Threshold Filter Rate PickScore (1) HPSv2 (1) AES (1) ImageReward (1)

m =0 23.88% 21.86 28.68 6.0540 66.21

m = 0.005 41.21% 21.78 28.79 6.0703 60.30

m = 0.01 50.19% 21.72 28.64 6.0766 61.60

m = 0.02 83.47% 21.82 28.78 6.0447 65.46
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Figure 14. The winning rate comparison on DreamShaper-x1-v2-turbo and Hunyun-DiT across 3 datasets, including Pick-a-Pic, DrawBench
and HPD v2 (HPD) with inference steps 50. The results demonstrate the superiority of our NPNet.

Generalization to Random Seeds. As we mentioned in [0,100]. This discrepancy may lead to our NPNet poten-
Sec. 3.2, the random seed range for the training set is tially overfitting on specific random seeds. To evaluate the
[0,1024], while the random seed range for the test set is performance of our NPNet under arbitrary random seeds,



we artificially modified the seeds in the test set. The ex-
perimental results on the Pick-a-Pic dataset are presented
in Appendix Table 19, demonstrating that our NPNet main-
tains strong performance across a variety of random seed
conditions, making it suitable for diverse scenarios in real-
world applications. The results demonstrate that our NPNet
exhibits strong generalization capabilities across the out-of-
distribution random seed ranges.

Robustness to Inference Steps and Hyper-parameters.

In Appendix Fig. 16, we conduct the experiments on
DreamShaper-x1-v2-turbo and Hunyuan-DiT under various
inference steps. The curve representing our method con-
sistently remains at the top, demonstrating that our model
achieves the best performance across various inference
steps, further validating the robustness of our approach. To
further support our claims, we present the winning rate of
SDXL, DreamShaper-x1-v2-turbo and Hunyuan-DiT under
various inference in two different datasets, shown in Ap-
pendix Fig. 17. These promising results validate the effec-
tiveness of our NPNet.

Robustness to Hyper-parameters. We also conduct the
experiments on different hyper-parameter settings, includ-
ing the CFG value, batch size and training epochs, shown
in Appendix Table 12. It reveals that the optimal setting
of these parameters are CFG 5.5, batch size 64, and train-
ing epoch 30. For all the experiments in the paper, we all
use this setting. Moveover, we explore the influence of the
number of training samples, shown in Appendix Table 17,
we believe that a large dataset can ensure data diversity and
improve the model’s robustness and generalization ability.

D.6. Efficiency Analysis and Ablation Studies

Efficiency Analysis. As a plug-and-play module, it
raises concerns about potential increases in inference la-
tency and memory consumption, which can significantly
impact its practical value. In addition to Fig. 5 presented
in the main paper, we also measure the time required to
synthesize each image under the same inference step con-
ditions, shown in Appendix Table 11. Our model achieves
a significant improvement in image quality with only a 0.4-
second inference delay. Additionally, as shown in Appendix
Fig. 15, our model requires just 500 MB of extra memory.
These factors highlight the lightweight and efficient nature
of our model, underscoring its broad application potential.

Ablation Studies. = We explore the influence of the text
embedding term e. Although in Appendix Table 15, the
value of « is very small, the results in Appendix Table 16
still demonstrate the importance of this term. It can facili-
tate a refined adjustment of how much semantic information
influences the model’s predictions, enabling the semantic

relevance between the text prompt and synthesized images,
and the diversity of the synthesized images.

D.7. Experiments on Large-scale Dataset

To evaluate the effectiveness of our NPNet, we conduct the
experiments on a large-scale dataset, GenEval, across dif-
ferent T2I models. The results are shown in Appendix Ta-
ble 13 and Table 14. The all improved metrics reveal the
superiority of our NPNet, suggesting that our NPNet can
improve the compositional image properties of the synthe-
sized images.

E. Theoretical Understanding of Re-denoise
Sampling

In main paper Sec. 3.1, we utilize re-denoise sam-
pling to produce noise pairs. we propose to utilize
DDIM-Inversion(-) to obtain the noise from the previ-
ous step. Specifically, the joint action of DDIM-Inversion
and CFG can induce the initial noise to attach semantic
information. The mechanism behind this method is that
DDIM-Inversion(-) injects semantic information by lever-
aging the guidance scale in classifier-free guidance (CFG)
inconsistency:

Theorem E.1. Given the initial Gaussian noise Xp ~
N(0,I) and the operators DDIM-Inversion(-) and
DDIM(-). Using re-denoise sampling, we can obtain that:

QToT | — AT_|LOT k
p = xp o T [(wn — wu) (e (¢ T 7 [€)
Tk

)]

— EQ(XT_%,Tf

where k stands for the DDIM sampling step, c is the text
prompt, and w; and w,, are CFG at the timestep T and CFG
at timestep T —k, respectively.

Proof. One step re-denoise sampling represents one addi-
tional step forward sampling and one step reverse sampling
against the initial Gaussian noise, which can be denoted as

x7 = DDIM-Inversion(DDIM(x7)), an

where DDIM-Inversion(-) refers to the sampling algorithm
in Eqn. | when x; and x;_; are interchanged. We can



Table 11. Experiments on different samplers w.r.t. inference time cost on SDXL. The NPNet trained on noise samples produced by the
deterministic sampler DDIM, demonstrates impressive generalization to non-deterministic samplers, incurring only minimal additional
time costs.

Methods PickScore (1) HPSV2 (1) AES (1) ImageReward (1) Time Cost(second per image)
anda 21. 28.4 .0373 .01 11.
DDIMScheduler [48] Standard 69 8.48 6.037 58.0 69
NPNet (ours) 21.86 28.68 6.0540 65.01 12.10
DPMSolverMultistepScheduler [31] Standard 21.66 28.41 5.9513 55.01 9.84
NPNet (ours) 21.72 28.81 5.9744 67.30 10.43
21. 28.72 .1 291 10.
DDPMScheduler [15] Standard 78 8.7 6.1353 72.9 0.86
NPNet (ours) 21.91 29.24 6.1505 78.50 11.43
EulerAncestralDiscreteScheduler [22] Standard 21.72 28.66 6.0740 67.01 1028
NPNet (ours) 21.84 28.96 6.0886 85.05 10.86
21. 29. R 2.81 11.44
PNDMScheduler [29] Standard 78 9.35 5.9809 62.8 0
NPNet (ours) 21.81 29.74 6.0256 67.58 11.82
KDPM2AncestralDiscreteScheduler [22 Standard 2181 29.22 6.0382 77.39 1625
NPNet (ours) 21.93 29.62 6.0951 84.78 16.73
t 21. 28.71 .07 4. 16.74
HeunDiscreteScheduler [22] Standard 83 8 6.0705 64.33 6
NPNet (ours) 21.86 28.98 6.0892 73.31 17.04

Table 12. Ablation studies of the hyper-parameters on SDXL on Pick-a-Pic dataset.

Hyper-parameters PickScore (1) HPSv2 (1) AES (1) ImageReward (1)
5 21.77 28.62 6.0688 65.84
10 21.76 28.67 6.0629 60.59
Epochs
15 21.69 28.62 6.0721 58.74
30 21.86 28.68 6.054 65.01
wy =1 20.11 21.80 6.0601 -51.30
. w; =3 21.53 27.28 6.0880 44.49
Guidance Scale
w1 =5.5 21.86 28.68 6.0540 65.01
w1 =17 21.81 29.12 6.0529 70.31
bs =16 21.76 28.74 6.0677 60.80
Batch Size bs = 32 21.68 28.68 6.0483 65.47
bs = 64 21.86 28.68 6.0540 65.01

Table 13. We evaluate the effectiveness of our NPNet on larger T2I benchmark, GenEval. The results validate the superiority of our
method.

Model PickScore (1) HPSvV2 (1) AES (1) ImageReward (1)
Standard 22.58 28.00 5.4291 55.44
SDXL Inversion 22.64 28.24 5.4266 58.37
NPNet(ours) 22.73 28.41 5.4506 65.56
Standard 23.51 31.20 5.5234 97.52
DreamShaper-x1-v2-turbo Inversion 23.47 30.85 5.5157 95.91
NPNet(ours) 23.59 31.24 5.5577 100.06
Standard 23.15 30.46 5.6233 111.73
Hunyuan-DiT Inversion 23.16 30.63 5.6210 111.98

NPNet(ours) 23.15 30.69 5.7040 115.57




Table 14. We evaluate the effectiveness of our NPNet on Genval benchmark.

Single (1) Two (1) Counting (1) Colors (1) Positions () Color Attribution (1) Overall (1)
Standard 97.50 63.64 36.25 85.11 8.00 19.00 51.58
NPNet (ours) 98.75 67.68 37.50 82.98 13.00 21.00 53.49

rewrite it in forms of linear transformation:

e — T e T—k
Ky = ar (XT k — OT—k€o (XT—k )> ¥ oo (xpp, T—k)

Qg
X:I- = aT
ar_g (%&M) +orree(xr,T) — or—keo(XT—k, T —K)
ar g
+oreo(Xri, T—k)
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xp =x7 —oreg(xr,T) + ———eo(xr,T) — €0 (x7k, T—k)
aT—k ATk
+ orep(xT—k, T —k)
Qo) — AT KOT
X = X7 + ” leo(x7,T) — eq (x4, T—k)],
Tk

12)

where k stands for the DDIM sampling step. Substitute
eo(xt,t) = (w4 1)ep(xe, t|c) — wep(x4, t|D) into Eq. 12,
we can obtain

aror ) — ar_|RoT

Xl = %7 + [(wl + e (x1, T|c) — wiee (x7, T|2))

Tk
— (W + Deo (e, T—k|C) + we e (X1, T7k|z))] .
(13)

Where w; and w,, refer to the classifier-free guidance
scale at the timestep 7' and the classifier-free guidance
scale at timestep 1" — k, respectively. c stands for the text
prompt (i.e., condition). Consider the first-order Taylor

expansion eg(xp,T—klc) = GQ(XT_g,ng‘C) +
XT*kffog aeg(xTig,ng\c) & 8eg(xT7%,T7§\c)

2 SXT_% § 6T_%

k)2 k
O((%)") and ey(xr,Tlc) = CQ(XT_g,T—§‘C) +
XT—X,I;% 869 (XT—% 7T—§‘C) k 869 (XT7% ,T—§|c) O k 2

2 e s +O35)):

2
when xr satisfies the condition HMH < L,

where L < 400, Eq. 13 can be transformed into:

QToT—|y — AT_KOT

k
Xp = X7 + [(wl —wu,)(eg(xTig,T—Ek:)

XT—k (14)

k
— €0 T—512))].
The proof is complete. O

By using Eqn. 14, when there is a gap between w; and
Wy, re-denoise sampline can be considered as a technique
to inject semantic information under the guidance of future
timestep (t =71 — g) CFG into the initial Gaussian noise.

F. Discussion

Limitations. Although our experimental results have
demonstrated the superiority of our method, the limitations
still exist. As a machine learning framework, our method
also faces classic challenges from training data quality and
model architecture design. First, noise prompt data quality
sets the performance limit of our method. The data qual-
ity is heavily constrained by re-denoise sampling and data
selection, but lack comprehensive understanding. For ex-
ample, there exists the potential risk that the proposed data
collection pipeline could introduce extra bias due to the Al-
feedback-based selection. Second, the design of NPNet is
still somewhat rudimentary. While ablation studies support
each component of NPNet, it is highly possible that more
elegant and efficient architectures may exist and work well
for the novel noise prompt learning task. Optimizing model
architectures for this task still lacks principled understand-
ing and remain to be a challenge.

Future Directions.  Our work has various interesting fu-
ture directions. First, it will be highly interesting to inves-
tigate improved data collection methods in terms of both
performance and trustworthiness. Second, we will design
more streamlined structures rather than relying on a paral-
lel approach with higher performance or higher efficiency.
For example, we may directly utilize a pre-trained diffusion
model to synthesize golden noise more precisely. Third, we
will further analyze and improve the generalization of our
method, particularly in the presence of out-of-distribution
prompts or even beyond the scope of T2I tasks.

Table 15. The values of the two trainable parameters « and 3.

Model « I}
SDXL 1.00E-04 -0.0189
DreamShaper-x1-v2-turbo 7.00E-05 0.0432
Hunyuan-DiT 2.00E-04 0.0018

G. More Visualization Results

We present more visualization results on different dataset,
different diffusion models and with different noise opti-
mization methods on Fig. 22, 23, 24, 25, 26, 27, 28,
29, 31, 30, 32 and 33.
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Figure 15. Our NPNet requires only about S00MB, illustrating the
light-weight and efficiency of our model.

Table 16. We explore the influence of text embedding e. The re-
sults reveal that text embedding e is crucial in noise prompt learn-
ing, which aims to inject the semantic information into the noise.

Method PickScore (1) HPSv2 (1) AES (1) ImageReward (1)
NPNet w/o text embedding e 21.72 28.70 6.0513 62.14
NPNet 21.86 28.68 6.0540 65.01

Algorithm 1: Noise Prompt Dataset Collection

1:

Input: Timestep ¢ € [0, - - - , T'], random Gaussian noise xr,
text prompt ¢, DDIM operateor DDIM(-), DDIM inversion
operator DDIM-Inversion(-), human preference model ®
and filtering threshold m.

: Output: Source noise xr, target noise x7 and text prompt c.

: Sample Gaussian noise xT

. # re-denoise sampling, see Sec. 3.1 in the main paper

: xr—1 = DDIM(x7)

: x’r = DDIM-Inversion(x7—_1)

. # standard diffusion reverse process

D Xp = DDIM(XT)

: xo = DDIM(x7)

. # data filtering via the human preference model, see Sec. 3.1
. if ®(x0, ¢) + m < ®(x(, c) then

store (Xr, X7, C)

: end if

Algorithm 2: Noise Prompt Network Training

1:

Input: Noise prompt dataset D := {xr,, X, cl}‘lzl1 noise

prompt model ¢ parameterized by singular value predictor
f() and residual predictor g(-, -), the frozen pre-trained text
encoder £(-) from diffusion model, normalization layer

o(-, ), MSE loss function £, and two trainable parameters o
and (.

: Output: The optimal noise prompt model ¢* trained on the

training set D.

. # singular value prediction, see (0)

X7, = f(xT,)

. # residual prediction, see (7)

X1, = 9(XT;, Ci)

: #see (9)

x'Tpredi = ao(xr,,E(ci)) + Xy, + SR,

6: L; = E(x'Tmedi ,XT,)
7: update ¢

: return ¢*

Algorithm 3: Inference with Noise Prompt Net-
work

1: Input: Text prompt c, the trained noise prompt network ¢ (-,

(98]

-) and the diffusion model f(-, -).

: Output: The golden clean image xg.
: Sample Gaussian noise

4: # get the golden noise

X’lTpred = ¢* (XT7 C)

: # standard inference pipeline

X6 = f(X/Tpred’ c)

: return x{




Table 17. In order to explore the scaling law [21] in NPNet, we train our NPNet with different numbers of training samples on SDXL on
Pick-a-Pic dataset.

Numbers of Training Samples Method PickScore (1) HPSV2 (1) AES (1) ImageReward (1) CLIPScore(%) (T) MPS(%) (1)
Standard 21.69 28.48 6.0373 58.01 82.04 -
3w NPNet (ours) 21.82 28.78 6.0750 67.26 82.17 50.63
6W NPNet (ours) 21.75 28.65 6.0392 64.56 81.98 51.60
10W NPNet (ours) 21.86 28.68 6.0540 65.01 84.08 52.15

Table 18. We evaluate NPNet on few steps T2I diffusion models, like LCM [33], PCM [51] and SDXL-Lightning [26] on GenEval dataset.
Here we use the NPNet from SDXL, and the results demonstrate NPNet can generalize well to different kinds of T2I diffusion models,
boosting their performance directly.

Model PickScore () HPSv2 (1) AES (1) ImageReward () CLIPScore (1)
SDXL-Lightning Standard 22.85 29.12 5.6521 59.02 0.8093
(4 steps) NPNet(ours) 23.03 29.71 5.7178 72.67 0.8150
LCM Standard 22.30 26.52 5.4932 33.21 0.8050
(4 steps) NPNet(ours) 22.38 26.83 5.5598 37.08 0.8123
PCM Standard 22.05 26.98 5.5245 23.28 0.8031
(8 steps) NPNet(ours) 22.22 27.59 5.5667 35.01 0.8175

Table 19. Random seed generalization experiments on SDXL with difference inference steps on Pick-a-Pic dataset. The random seeds
of our training set range from [0, 1024], containing the random seeds of our test set. To explore the generalization ability of NPNet on
out-of-distribution random seeds, we manually adjust the random seed range of the test set.

Inference Steps Random Seed Range PickScore (1) HPSV2 (1) AES (1) ImageReward (1)
Standard 21.69 28.48 6.0373 58.01
[0, 1024] (Original) Inversion 21.71 28.57 6.0503 63.27
NPNet (ours) 21.86 28.68 6.0540 65.01
Standard 21.63 28.57 5.9748 67.09
[2500, 3524] Inversion 21.71 28.75 5.9875 70.92
50 NPNet (ours) 21.81 29.02 5.9917 80.83
Standard 21.74 28.82 6.0534 78.02
[5000, 6024] Inversion 21.78 29.04 6.0418 76.05
NPNet (ours) 21.83 29.09 6.4220 79.84
Standard 21.70 29.12 6.0251 78.71
[7500, 7524] Inversion 21.78 29.18 6.0541 82.69
NPNet (ours) 21.81 29.02 6.0641 89.53
Standard 21.71 28.70 6.0041 61.76
[0, 1024] (Original) Inversion 21.72 28.70 6.0061 61.73
NPNet (ours) 21.86 29.10 6.0761 74.57
Standard 21.69 28.73 5.9946 69.22
[2500, 3524] Inversion 21.74 28.92 5.9863 71.86
100 NPNet (ours) 21.81 29.04 5.9977 78.75
Standard 21.81 28.40 6.0489 79.57
[5000, 6024] Inversion 21.85 28.66 6.0374 79.94
NPNet (ours) 21.88 29.16 6.0576 83.87
Standard 21.73 28.67 6.0347 77.66
[7500, 7524] Inversion 21.80 28.75 6.0600 82.33

NPNet (ours) 21.86 29.12 6.0502 89.79
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Figure 16. Visualization of performance w.r.t inference steps on SDXL, DreamShaper-xI-v2-turbo and Hunyuan-DiT on Pick-a-Pic dataset
and DrawBench dataset. The results demonstrate the strong generalization ability of our NPNet.
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Figure 17. The winning rate comparison on SDXL, DreamShaper-x1-v2-turbo and Hunyuan-DiT across 2 datasets, including DrawBench
and HPD v2 (HPD). The results reveal that our NPNet is more effective in transforming random Gaussian noise into golden noises in
different inference steps across different datasets.
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A curious cat exploring a haunted mansion.

ﬁspanish water dog breed as arthur morgan from red dead redemptiom
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GenEval

f A photo of a stop sign and a toaster. \

A photo of a red train and a purple bear.

A photo of a purple tennis racket and a black sink.

A photo of a blue vase and a black banana.
A photo of a bear above a spoon.

A photo of a bed right of a frisbee.
A photo of a zebra below a computer keyboard.

photo of a wine glass right of a hot dog.

A photo of a potted plant and a backpack.

A photo of four computer keyboards.

k o o o J

Figure 18. Part of our test datasets. All of the training and test datasets will be released.
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Figure 19. Winning rate of noise optimization methods on three different datasets, using SDXL. The results demonstrate that when NPNet
is used in conjunction with other noise optimization methods, it can enhance the winning rate of existing approaches to some extent.



Table 20. We combine other popular noise optimization methods with our NPNet, evaluating on three different datasets on SDXL. The
experimental results indicate that when NPNet is used alongside other methods, it significantly enhances their performance, further vali-
dating the effectiveness and generalizability of our approach.

Dataset Method PickScore (1) HPSv2 (1) AES (1) ImageReward (1) CLIPscore (1)
Standard 21.69 28.48 6.0373 58.01 0.8204
Re-sampling [32] 21.77 28.63 5.9875 64.94 0.8327
+ NPNet (ours) 21.90 29.29 6.1491 71.09 0.8386
PAG [1] 21.64 29.45 6.2246 55.91 0.7966
+ NPNet (ours) 21.70 29.80 6.2411 62.03 0.8079
CFG++ [9] 21.67 29.54 6.1239 75.16 0.8322
+ NPNet (ours) 21.82 29.84 6.1703 81.60 0.8374
Pick-a-Pic APG [44] 21.69 28.48 6.1472 65.86 0.8295
+ NPNet (ours) 21.86 29.13 6.1629 76.50 0.8322
FreeU [47] 21.39 29.12 6.2134 79.74 0.8094
+ NPNet (ours) 21.42 29.44 6.2194 77.42 0.8059
SAG [18] 21.70 29.42 6.1507 59.61 0.8162
+ NPNet (ours) 21.79 29.63 6.1535 65.75 0.8193
SEG [16] 21.47 29.23 6.2118 61.60 0.8060
+ NPNet (ours) 21.60 29.72 6.2253 72.51 0.8077
Standard 22.31 26.72 5.5952 62.21 0.8077
Re-sampling 22.30 26.96 5.5104 64.07 0.8106
+ NPNet (ours) 22.47 27.55 5.6487 75.36 0.8136
PAG 22.25 27.81 5.7082 67.25 0.7965
+ NPNet (ours) 22.34 28.17 5.7646 72.10 0.7989
CFG++ 22.35 28.28 5.6720 81.69 0.8230
+ NPNet (ours) 22.45 28.67 5.7035 86.40 0.8263
DrawBench APG 22.29 26.94 5.6180 70.15 0.8194
+ NPNet (ours) 22.46 27.73 5.6445 81.30 0.8182
FreeU 21.97 27.31 5.7379 63.18 0.7973
+ NPNet (ours) 22.04 27.87 5.7464 77.53 0.7998
SAG 22.30 27.64 5.6651 64.56 0.8144
+ NPNet (ours) 22.37 27.98 5.6998 72.18 0.8104
SEG 22.16 28.08 5.7867 64.37 0.7979
+ NPNet (ours) 22.30 28.51 5.8093 74.12 0.7985
Standard 22.88 29.71 5.9985 96.63 0.8734
Re-sampling 2291 29.78 5.9948 97.39 0.8775
+ NPNet (ours) 22.96 30.16 6.0098 98.34 0.8787
PAG 22.80 30.54 6.1180 90.94 0.8536
+ NPNet (ours) 22.92 30.97 6.1091 106.24 0.8584
CFG++ 23.03 30.94 6.0269 107.70 0.8875
+ NPNet (ours) 23.08 31.07 6.0533 109.06 0.8920
HPD APG 22.94 29.64 6.0572 97.90 0.8836
+ NPNet (ours) 23.06 30.40 6.0232 111.55 0.8945
FreeU 22.72 30.52 6.0907 97.03 0.8580
+ NPNet (ours) 22.73 30.83 6.1148 102.77 0.8631
SAG 22.86 30.37 6.0680 93.62 0.8670
+ NPNet (ours) 22.92 30.71 6.0177 97.20 0.8748
SEG 22.74 30.47 6.0841 91.86 0.8569

+ NPNet (ours) 22.80 30.74 6.1160 104.16 0.8591




The image depicts a
towering, humanoid figure
made of wood and foliage,

resembling a golem or
guardian of the forest.

The image shows a
beautifully rendered
butterfly with intricate
details and a radiant,
ethereal quality.

The image depicts a
magnificent, ethereal
structure set against a
stunning mountainous
backdrop.

The image depicts a plush
mascot resembling a chicken,
which has a bright red comb

and a colorful beak, with

expressive eyes that
give it a lively appearance.

A closeup of two day of
the dead models, looking
to the side, large flowered
headdress.

The image features a
young girl with long,
flowing hair, standing on a
beach with the ocean in
the background.

Figure 20. ControlNet visualization with our NPNet on SDXL, including conditions like openpose, canny and depth. Middle is the
standard method, and right is our result. Our NPNet can be directly applied to the corresponding downstream tasks without requiring any
modifications to the pipeline of the T2I diffusion model.
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/¥ ---SDXL Inference Code----#/

# initialize the pipeline, scheduler and NPNet

pipe = StableDiffusionXLPipeline.from_pretrained(mode_id)
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
noise_model = NPNet()

# sample the initial noise
1p  initial_

noise = torch.randn(latent_shape)

12 # get the golden noise

13 prompt_embeds, _

= pipe.encode_prompt(prompt)

14 = golden_noise = NPNet(prompt_embeds=prompt_embeds, initial noise=zinitial noise)

16 = 1image =

pipe(prompt=prompt, height=height, width=width, guidance_scale=guidance_scale,

num_inference_steps=num_steps, latents=golden_noise).images[0]

Figure 21. Example inference code with NPNet on SDXL. Our NPNet operates as a plug-and-play module, which can be easily imple-

mented.
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Prompt: Drumset

his inner demons behind him
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black

Random Seed: 85

HPSv2: 0.2531 < 0.2824 (] Random Seed: 54 AES: 6.2399 < 6.4166 (]

Random Seed: 97

PickScore: 20.24 < 21.43 @

Prompt: Anime portrait of a beautiful vamire witch, ‘
sci-fi suit, infricate, elegant, highly detailed

) /Prompt Painting of melted gemstones metallic sculpture
with electrifying god rays brane bejeweled style

wearing cute dress, anime-style

.

Random Seed: 42
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Standard

i { Prompt: a girl with long silver hair, she looks 15 old,
E Random Seed: 65

MPS: 0.2451 < 0.7549 @&
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Figure 22. We visualized images synthesized by 3 different diffusion models and evaluated them using 6 human preference metrics. Images
for each prompt are synthesized using the same random seed. These images with NPNet demonstrated a noticeable improvement in overall
quality, aesthetic style, and semantic faithfulness, along with numerical improvements across all six metrics. More importantly, our NPNet
is applicable to various diffusion models, showcasing strong generalization performance with broad application potential.
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Figure 23. Visualization results about different methods on SDXL.
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Figure 24. Qualitative comparison on LCM.
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Figure 25. Qualitative comparison on PCM.
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Figure 26. Qualitative comparison on SDXL-Lightning.
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black backpack sitting on the grass. of a refrigerator. sea. Learning" written on it.

Figure 27. Qualitative comparison on Re-sampling.



PAG

+ NPNet

+ NPNet

Close-up of Cad Bane

Rainbow coloured
penguin.

A small toy of a green
Tyrannosaurus rex with
orange spots on its body,

roaring with its mouth

A car on the left of a bus. A real life photography of

super mario, 8k Ultra HD.

open.

Figure 28. Qualitative comparison on PAG.

Acaton the left of a dog. A cube made of brick. A Cinematic still of a highly
cube with the texture of  reflective steel train in the

brick. desert, at sunset.

Figure 29. Qualitative comparison on CFG++.
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APG
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Spider-Man holding
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suit and tie,
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Figure 30. Qualitative comparison on FreeU.
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Figure 31. Qualitative comparison on APG.
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A black colored A papaya fruit dressed as A triangular purple Greek statue of a man Two cars on the street.
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Figure 32. Qualitative comparison on SAG.
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Figure 33. Qualitative comparison on SEG.



