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1. Additional Experimental Results
1.1. Data Efficiency and Lightweight Inference

Dataset Ratio Lingo-Judge↑

LLaVA-v1.5 HoP (Ours) ∆

25% 60.0 64.0 +4.0
50% 60.6 65.6 +5.0
100% 63.2 67.8 +4.6

Table 1. Data-efficient domain adaptation of HoP. ∆: the per-
formance gain of HoP over LLaVA-v1.5 at same data ratio.

LLM Method LJ ↑ Latency (ms)

Qwen-v2-0.5B
Baseline 54.8 295
+ Efficient HoP 57.6 (+2.8) 302

Qwen-v2.5-3B
Baseline 61.2 483
+ Efficient HoP 64.6 (+3.4) 504
+ Efficient HoP (AWQ) 64.2 (+3.0) 281

Table 2. Performance comparison of Efficient HoP with baseline
models. Green numbers indicate LJ (Lingo-Judge) improvements.
AWQ indicates the quantized model.

As shown in Tab. 1 and Tab. 2, our HoP framework con-
sistently outperforms LLaVA-v1.5 across all data regimes
and model scales. It improves Lingo-Judge scores by up
to +5.0 with only 50% training data, highlighting its effec-
tiveness in low-data scenarios. Even with full data, HoP
maintains a +4.6 advantage, demonstrating strong visual-
language alignment. Furthermore, the Efficient HoP variant
achieves 41.8% lower latency via 4-bit AWQ quantization
while preserving competitive performance, confirming its
scalability and deployment readiness.

1.2. Evaluation on Planning Task
To assess the applicability of HoP in real-world autonomous
driving scenarios, we evaluate it on the nuScenes open-loop
planning benchmark following the OmniDrive setup. As
shown in Tab. 3, HoP surpasses all baselines including Driv-
eLM and LLaVA-v1.5 across multiple metrics (lower is bet-
ter), such as L2 distance, collision rate, and intersection vi-
olations. This demonstrates HoP’s capability to generate
more accurate and safer trajectories by leveraging enriched
visual-language representations.

1.3. Temporal Consistency Analysis
To further evaluate the stability of HoP’s predictions across
time, we employ the Trajectory Prediction Consistency

Method
L2 (m) ↓ Collision (%) ↓ Intersection (%) ↓

1s 2s 3s Avg. 1s 2s 3s Avg. 1s 2s 3s Avg.

DriveLM† 1.32 2.08 3.01 2.14 0.42 2.01 4.12 2.18 0.88 3.12 6.45 3.48
LLaVA-v1.5 1.28 2.13 3.22 2.21 0.16 1.68 3.52 1.79 1.02 3.44 7.00 3.82
HoP 1.07 1.81 2.62 1.83 0.25 1.30 2.17 1.24 0.21 2.13 5.06 2.47

Table 3. Planning results on nuScenes. †: fair DriveLM reproduc-
tion.

(TPC) metric introduced in MomAD. TPC measures frame-
to-frame deviation between consecutive trajectory predic-
tions. As shown in Tab. 4, HoP achieves lower TPC scores
than LLaVA-v1.5, indicating improved temporal coherence,
despite operating with frame-wise vision features.

Method TPC@1s ↓ TPC@2s ↓ TPC@3s ↓ Avg. ↓

LLaVA-v1.5 0.49 0.85 1.24 0.86
HoP 0.46 0.81 1.18 0.82

Table 4. Trajectory prediction consistency (lower is better).

1.4. Robustness Under Long-tail Distributions
We further evaluate HoP on CODA-LM, a benchmark de-
signed to measure visual-language reasoning under long-
tail distributions. As shown in Tab. 5, HoP achieves the
best overall performance and outperforms CODA-VLM in
three of four sub-metrics, despite the latter using a stronger
backbone (LLaVA-Llama-3-8B-v1.1).

Method Final Score ↑ General ↑ Region ↑ Suggestion ↑

LLaVA-v1.5 28.17 19.30 42.06 23.16
CODA-VLM 63.62 55.04 77.68 58.14
HoP 64.38 57.22 76.93 59.00

Table 5. Results on CODA-LM benchmark.

1.5. Generalizability to Stronger MLLMs
To validate HoP’s compatibility with modern vision-
language backbones, we integrate it with Qwen2.5-VL. As
reported in Tab. 6, HoP yields a +2.6 gain in Lingo-Judge
score over the Qwen2.5-VL base model, establishing a new
SOTA on LingoQA and confirming HoP’s general applica-
bility across architectures.

Method LJ ↑ BLEU-4 ↑ METEOR ↑ CIDEr ↑

Qwen2.5-VL-7B 68.80 13.28 19.52 60.31
Qwen2.5-VL-HoP 71.40 13.31 19.51 60.59

Table 6. Results on LingoQA with Qwen2.5-VL.



Figure 1. Visualization results on the LingoQA dataset. LLaVA-v1.5 serves as our baseline. Abbreviations: Q (Question), GT(Ground
Truth).

2. More Quantitative Results
We present additional qualitative results of HoP on the Lin-
goQA, DRAMA, and BDD-X datasets, as illustrated in
Fig. 1, Fig. 2, and Fig. 3.



Figure 2. Visualization results on the DRAMA dataset. LLaVA-v1.5 serves as our baseline. Abbreviations: Q (Question), GT(Ground
Truth).

Figure 3. Visualization results on the BDD-X dataset. LLaVA-v1.5 serves as our baseline. Abbreviations: Q (Question), GT(Ground
Truth).
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