Hints of Prompt: Enhancing Visual Representation for Multimodal LLMs in Autonomous Driving

Supplementary Material

1. Additional Experimental Results

1.1. Data Efficiency and Lightweight Inference

Dataset Ratio	Lingo-Judge↑				
	LLaVA-v1.5	HoP (Ours)	Δ		
25%	60.0	64.0	+4.0		
50%	60.6	65.6	+5.0		
100%	63.2	67.8	+4.6		

Table 1. Data-efficient domain adaptation of HoP. Δ : the performance gain of HoP over LLaVA-v1.5 at same data ratio.

LLM	Method	LJ↑	Latency (ms)
Qwen-v2-0.5B	Baseline	54.8	295
	+ Efficient HoP	57.6 (+2.8)	302
Qwen-v2.5-3B	Baseline	61.2	483
	+ Efficient HoP	64.6 (+3.4)	504
	+ Efficient HoP (AWQ)	64.2 (+3.0)	281

Table 2. Performance comparison of Efficient HoP with baseline models. Green numbers indicate LJ (Lingo-Judge) improvements. AWQ indicates the quantized model.

As shown in Tab. 1 and Tab. 2, our HoP framework consistently outperforms LLaVA-v1.5 across all data regimes and model scales. It improves Lingo-Judge scores by up to +5.0 with only 50% training data, highlighting its effectiveness in low-data scenarios. Even with full data, HoP maintains a +4.6 advantage, demonstrating strong visual-language alignment. Furthermore, the Efficient HoP variant achieves 41.8% lower latency via 4-bit AWQ quantization while preserving competitive performance, confirming its scalability and deployment readiness.

1.2. Evaluation on Planning Task

To assess the applicability of HoP in real-world autonomous driving scenarios, we evaluate it on the nuScenes open-loop planning benchmark following the OmniDrive setup. As shown in Tab. 3, HoP surpasses all baselines including DriveLM and LLaVA-v1.5 across multiple metrics (lower is better), such as L2 distance, collision rate, and intersection violations. This demonstrates HoP's capability to generate more accurate and safer trajectories by leveraging enriched visual-language representations.

1.3. Temporal Consistency Analysis

To further evaluate the stability of HoP's predictions across time, we employ the Trajectory Prediction Consistency

Method		L2 (m) ↓		Collision (%) ↓ 1s 2s 3s Avg.			Intersection (%) ↓					
Method	1s	2s	3s	Avg.	1s	2s	3s	Avg.	1s	2s	3s	Avg.
DriveLM [†] LLaVA-v1.5 HoP	1.32	2.08	3.01	2.14	0.42	2.01	4.12	2.18	0.88	3.12	6.45	3.48
LLaVA-v1.5	1.28	2.13	3.22	2.21	0.16	1.68	3.52	1.79	1.02	3.44	7.00	3.82
HoP	1.07	1.81	2.62	1.83	0.25	1.30	2.17	1.24	0.21	2.13	5.06	2.47

Table 3. Planning results on nuScenes. †: fair DriveLM reproduction.

(TPC) metric introduced in MomAD. TPC measures frame-to-frame deviation between consecutive trajectory predictions. As shown in Tab. 4, HoP achieves lower TPC scores than LLaVA-v1.5, indicating improved temporal coherence, despite operating with frame-wise vision features.

Method	TPC@1s↓	TPC@2s↓	TPC@3s↓	Avg. ↓
LLaVA-v1.5	0.49	0.85	1.24	0.86
HoP	0.46	0.81	1.18	0.82

Table 4. Trajectory prediction consistency (lower is better).

1.4. Robustness Under Long-tail Distributions

We further evaluate HoP on CODA-LM, a benchmark designed to measure visual-language reasoning under longtail distributions. As shown in Tab. 5, HoP achieves the best overall performance and outperforms CODA-VLM in three of four sub-metrics, despite the latter using a stronger backbone (LLaVA-Llama-3-8B-v1.1).

Method	Final Score ↑	General ↑	Region ↑	Suggestion ↑
LLaVA-v1.5	28.17	19.30	42.06	23.16
CODA-VLM	63.62	55.04	77.68	58.14
HoP	64.38	57.22	76.93	59.00

Table 5. Results on CODA-LM benchmark.

1.5. Generalizability to Stronger MLLMs

To validate HoP's compatibility with modern vision-language backbones, we integrate it with Qwen2.5-VL. As reported in Tab. 6, HoP yields a +2.6 gain in Lingo-Judge score over the Qwen2.5-VL base model, establishing a new SOTA on LingoQA and confirming HoP's general applicability across architectures.

Method	LJ ↑	BLEU-4↑	METEOR ↑	CIDEr ↑
Qwen2.5-VL-7B	68.80	13.28	19.52	60.31
Qwen2.5-VL-HoP	71.40	13.31	19.51	60.59

Table 6. Results on LingoQA with Qwen2.5-VL.

Figure 1. **Visualization results on the LingoQA dataset.** LLaVA-v1.5 serves as our baseline. Abbreviations: Q (Question), GT(Ground Truth).

2. More Quantitative Results

We present additional qualitative results of HoP on the LingoQA, DRAMA, and BDD-X datasets, as illustrated in Fig. 1, Fig. 2, and Fig. 3.

Figure 2. **Visualization results on the DRAMA dataset.** LLaVA-v1.5 serves as our baseline. Abbreviations: Q (Question), GT(Ground Truth).

Figure 3. Visualization results on the BDD-X dataset. LLaVA-v1.5 serves as our baseline. Abbreviations: Q (Question), GT(Ground Truth).