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1. Supplementary Ablation Studies

We conducted additional ablation studies on the MIMIC-
CXR test set, focusing on: 1) integrating the two proposed
strategies into PromptMRG[3] with CLIP, 2) analyzing key
components, including hyperbolic distance and MPSA, and
3) exploring the effect of different batch size, and 4) the
influence of hyperparameters.

Table 1 shows that, with the CLIP baseline, LRE alone
improves average NLG and CE by 1.6%, FVTAF alone by
1.3%, and together achieve a 2.2% gain. Table 2 highlights
that hyperbolic distance surpasses Euclidean distance and
cosine similarity by 1.0% and 0.6%, respectively, demon-
strating its strength in capturing hierarchical visual features.
Table 3 reveals that replacing traditional cross-attention
with MPSA provides a further 0.5% improvement, empha-
sizing the significance of both hyperbolic representations
and MPSA. Figure 1 shows that performance declines with
excessively small batches but plateaus as size increases.
This is attributed to two factors: moderate batch sizes
enhance input diversity through varied retrievals, while
our FVTAF module’s multi-source alignment design filters
noise, ensuring training robustness.

As shown in Figure 2 (a) and (b), the performance re-
mains stable across a wide range, with F1 score fluctuations
within 0.8% for α and 1.4% for β. Notably, the best F1
score of 0.592 is obtained when α = 2 and β = 0.5, which
are the values we used in our experiments. As illustrated
in Figure 2(a), when α deviates from 2, either too small or
too large, the selection of the global reference prompt is ad-
versely affected, resulting in lower F1 performance. Sim-
ilarly, Figure 2(b) shows that the optimal performance is
reached at around β = 0.5. Values of β that are too high or
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Figure 1. Effect of different batch size on model training perfor-
mance.

Figure 2. Analysis of the hyperparameters α (in subfigure (a)) and
β (in subfigure (b)) with F1 scores on the MIMIC-CXR test set.

too low yield inferior outcomes, likely due to a multi-scale
misalignment, which introduces noise and disrupts the re-
port generation process.
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Models NLG Metrics CE Metrics AvgBLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE Precision Recall F1

Baseline (CLIP-based) 0.398 0.239 0.156 0.112 0.157 0.268 0.501 0.509 0.476 0.313

+ LRE 0.419 0.252 0.171 0.119 0.178 0.281 0.532 0.521 0.490 0.329
+ FVTAF 0.407 0.251 0.169 0.119 0.163 0.275 0.524 0.533 0.493 0.326

+ LRE & FVTAF 0.421 0.253 0.175 0.121 0.185 0.286 0.535 0.537 0.492 0.335

Table 1. Analysis on the effectiveness of each component within a CLIP-based foundation model on MIMIC-CXR test set.

Methods NLG Metrics CE Metrics AvgBLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE Precision Recall F1

EDistance 0.458 0.306 0.222 0.170 0.192 0.321 0.619 0.604 0.584 0.387
Cosine Similarity 0.461 0.315 0.232 0.181 0.197 0.333 0.618 0.603 0.583 0.391

Hyperbolic 0.465 0.318 0.235 0.182 0.199 0.336 0.628 0.613 0.592 0.397

Table 2. Comparison with different retrieval strategies on the MIMIC-CXR dataset.

2. Tackling Data Imbalance

Following the approaches [2, 3], we count the number of
positive samples in the MIMIC-CXR test set and calculate
the distribution of each disease, as detailed in Table 4. The
results reveal a pronounced long-tailed distribution, indicat-
ing the imbalance of disease classification. For analytical
clarity, we define diseases with a sample ratio exceeding
10% as head classes, and those with lower proportions as
tail classes. This categorization not only facilitates a more
nuanced evaluation of our model’s performance but also
underscores the inherent challenges associated with imbal-
anced data in clinical imaging datasets.

Effectiveness of Addressing the Long-tailed Data Distri-
bution. To evaluate the effectiveness of our method in ad-
dressing data imbalance, we categorized all diseases into
head and tail groups based on sample sizes and compared
the individual F1 scores between the baseline, our approach
and w/o LRE module (Figure 3). Detailed head-tail group-
ing information is provided in the Table 3. As shown, our
method consistently improves F1 scores across all disease
classes, with a 9.9% average increase for tail classes and a
7.7% improvement for head classes compared to the base-
line. Notably, the tail class “Fracture” achieves a remark-
able 16.1% gain over the baseline. These results highlight
the significant enhancements our framework brings to tail-
class recognition while also delivering notable improve-
ments for head classes. Moreover, incorporating the LRE
module consistently improves performance on both head
and tail classes, with average gains of 5.43% and 6.1%, re-
spectively, compared to our model, demonstrating its effec-
tiveness in handling data imbalance.

Figure 3. Comparison of baseline and our method in addressing
data imbalance, evaluated using F1 scores (%).

3. Evaluation with More Advanced Metrics

We adopt three advanced clinical evaluation metrics to
comprehensively assess the effectiveness of our model, in-
cluding 1/RadCliQ-v1[5], RadGraph[5], and BertScore[6]).
Here we compare our model against several recent
SOTA methods which are RGRG [4], MedVersa[7], and
PromptMRG [3]. As shown in Table 5, our approach
achieves superior performance across all metrics, outper-
forming the strongest model (PromptMRG) by margins of
0.11, 0.10, and 0.08, respectively. These results high-
light the robustness and clinical applicability of our frame-
work, demonstrating its capability to generate more accu-
rate and semantically faithful reports in comparison to ex-
isting methods.



Model NLG Metrics CE Metrics AvgBLEU-1 BLEU-2 BLEU-3 BLEU-4 METEOR ROUGE Precision Recall F1

Cross-attention 0.461 0.314 0.232 0.180 0.197 0.333 0.621 0.603 0.585 0.392
MSPA (Ours) 0.465 0.318 0.235 0.182 0.199 0.336 0.628 0.613 0.592 0.397

Table 3. Comparative evaluation of standard cross-attention and MPSA mechanisms on the MIMIC-CXR dataset.

Disease Classes Samples Distribution

Head Classes

Enlarged Cardio 730 18.9%
Cardiomegaly 1271 32.9%
Lung Opacity 1392 36.1%
Edema 563 14.6%
Atelectasis 841 21.8%
Pleural Effusion 1056 27.4%
Support Devices 1345 34.9%

Tail Classes

Lung Lesion 199 5.2%
Consolidation 176 4.6%
Pneumonia 165 4.3%
Pneumothorax 75 1.9%
Pleural Other 122 3.2%
Fracture 148 3.8%
No Finding 323 8.4%

Total - 3858 -

Table 4. The number of samples and their distribution ratios across
disease categories in the MIMIC-CXR test set.

Model 1/RadCliQ-v1 ↑ RadGraph ↑ BertScore ↑
RGRG 0.76 0.17 0.35
MedVersa 1.10 0.27 0.45
PromptMRG 1.24 0.31 0.49

Ours 1.35 0.41 0.57

Table 5. Evaluation with advanced clinic scores on the MIMIC-
CXR test set.

4. Supplementary Instruction for Evaluation
on GPT-Series Multi-Modal LLMs

We use a consistent prompt for GPT-series multi-modal
LLMs: “[You are helpful assistant of a radiologist. Your
task is help the radiologist to draft the professional radiol-
ogy report.] + [ Radiology image ] + [The image above is
an X-ray a patients. Write a professional report on it. An-
swer in one paragraph, and only include the finding part.]”.
However, the generated output often contains extraneous in-
formation, making the evaluation unfair. To ensure consis-
tency, we performed a two-step data cleaning process: (1)
Extract only the “Findings” section from the reports and
consolidate it into an individual report. (2) Remove num-
bers, line breaks, and other unnecessary elements, limiting

the text length to 200 characters. The final evaluation re-
sults, as presented in the main paper, are reported using the
same evaluation criteria as previous studies [1, 3].
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