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In the supplementary materials, we first present the ad-
ditional experimental analysis and introduce the construc-
tion of the Thermal480K and RGBT550K datasets, detail-
ing their sources, constitutions, and a selection of visualized
samples. Next, we explain the process of filtering samples
from the RGBT3M dataset to form the RGBT550K dataset
using the Structural Similarity Index Measure (SSIM). We
then provide additional visualizations of Cross-Modality
Structural Sparsity (CMSS), demonstrating its reliability as
a measure of information density in RGBT multispectral
images. Finally, we present the probability density func-
tions fitted by the Gaussian Mixture Model (GMM) and
conduct a feature visualization analysis for M-SpecGene.

1. Experimental Analysis
Modality Bias: 1) Qualitative analysis: Fig. 1 shows

two multi-object scenes with rich modality-invariant fea-
tures (e.g., mid-level: edge, relative location, local descrip-
tors; high-level: semantic information). M-SpecGene’s
t-SNE reveals significantly closer cross-modality feature
clustering. 2) Quantitative analysis: Single-modality pre-
trained models in Tab. 1 underperform in multispectral
tasks, as their pretrained parameters are suboptimal for
dual-modality training. By fully leveraging the complemen-
tary characteristics, M-SpecGene encoder is driven to focus
on learning modality-invariant representations, thereby ef-
fectively mitigating modality bias.

Methods Models Pretrain mAP mAP50 mAP75

InfMAE ConViT-B Infrared 39.7 76.6 35.6
MAE ViT-B RGB 43.0 82.8 37.8

M-SpecGene ViT-B RGB+IR 44.7 84.8 40.1

Table 1. Quantitative analysis of the modality bias.

Pre-trained Foundation Models Comparison: In
Tab. 2, we supply InfMAE evaluated under identical fine-
tuning protocols as M-SpecGene. InfMAE’s inferior results

Figure 1. Qualitative analysis of the modality bias, which shows
the t-SNE visualization of RGB and thermal features extracted by
InfMAE, MAE and M-SpecGene.

stem from: 1) infrared-only pretraining and 2) limited data.
Notably, M-SpecGene represents a pioneering exploration
of multispectral foundation models, establishing a simple
yet scalable baseline for this area.

FLIR LLVIP SemanticRT MVSeg
InfMAE 39.7 59.5 75.95 52.16

UniRGB-IR 44.1 63.2 75.21 56.46
M-SpecGene 44.7 65.3 79.84 63.02

Table 2. Comparison of pre-trained foundation models.

GMM-CMSS Masking Strategy: Survey [34] identi-
fies four key directions for improving Masked Image Mod-
eling (MIM): masking strategy, encoder, target, and head.
We clarify that innovations in masking strategy are a key
part of MIM framework development. Moreover, for the
initial exploration of self-supervised learning on multispec-
tral images, we believe that leveraging data characteristics
effectively is more meaningful than introducing complex ar-
chitectural changes. Therefore, we retain the core frame-
work design, such as the standard ViT, for better general-
izability and easier adaptation to other methods and tasks.
While the proposed sampling strategy is specifically tai-
lored to address the unique challenge of information im-
balance.

The design of GMM-CMSS masking strategy is moti-
vated by three key considerations: 1) Information density
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estimation: Given the uneven information distribution in
RGBT datasets, we aim to progressively mask from high-
to low-density regions. Thus, the CMSS is designed to
serve as an objective metric for density measurement. 2)
Sampling strategy based on CMSS: To balance high- and
low-density areas and not just focus on specific regions, we
adopt a Gaussian-based sampling function. 3) How to de-
termine GMM parameters: The EM algorithm is employed
to iteratively estimate {µk,Σk, πk} for fitting the overall
CMSS distribution. Notably, this adds minimal computa-
tional overhead. The prominent features of GMM-CMSS
masking strategy are interpretability and lightweight design.
Tab. 5 validates the effectiveness of GMM-CMSS by abla-
tion studies across four datasets, especially in object-centric
tasks such as detection.

Random GMM-CMSS
FLIRmAP↑ 83.80 84.80↑ 1.0

KAISTMR-2↓ 26.33 23.74↓ 2.59

MVSegmIoU↑ 62.66 63.06↑ 0.4

VI-RGBT1500Fmax
β ↑ 0.864 0.877↑ 0.013

Table 3. Ablation studies of the GMM-CMSS masking strategy.

Limitations: We highlight that M-SpecGene delivers
impressive performance compared to complex customized
models, particularly without any handcrafted modules. Yet
its advantages are limited by: 1) Dataset constraints: Many
benchmarks (e.g., FMB) suffer from small scale, low qual-
ity, limited diversity, and issues like coarse annotations
and train-test overlap. 2) Modality imbalance: As seen in
LLVIP, pedestrian detection relies heavily on the thermal
modality. 3) Low task complexity: In the simpler salient
object detection task, the performance gain is relatively
less. Overall, M-SpecGene excels in large-scale, diverse,
and modality-balanced multispectral datasets that demand
strong generalization. However, the lack of high-quality
RGBT datasets (e.g., ImageNet-scale benchmark) currently
limits full evaluation of its potential.

2. Thermal480K Dataset

Most available RGBT downstream datasets contain only
several thousand to tens of thousands of samples, which is
insufficient to train a foundational model with robust gen-
eralization capabilities. To address this data bottleneck,
we aim to maximize the utility of existing data: 1) Lever-
aging unimodal datasets: Since collecting aligned RGBT
images pairs is more difficult, while RGB or thermal uni-
modal datasets are abundant. To this end, we collect a
single-modality thermal dataset named Thermal480K, con-
sisting of 486,024 thermal image samples. 2) RGBT multi-
modality datasets: We have consolidated approximately

three million RGBT image samples (termed RGBT3M)
from various datasets across diverse tasks and scenarios.

We believe that combining datasets from diverse sce-
narios enhances the heterogeneity and richness of the ther-
mal data. Thus, we extensively collect unimodal thermal
data through a comprehensive review of publicly available
datasets in the fields of artificial intelligence and computer
vision. After performing further post-processing to elim-
inate redundant and highly similar samples, we construct
the Thermal480K dataset. As depicted in Fig. 3, the Ther-
mal480K dataset comprises samples acquired by different
imaging devices, covering a variety of resolutions, object
types, distances, tasks, and fields of view. This ensures a
robust and diverse collection of high-quality data, provid-
ing strong support for self-supervised learning. As shown
in Tab. 4, these datasets cater to a variety of applications,
including military operations, surveillance, industrial moni-
toring, denoising, and scientific research. They span a wide
range of resolutions, from 32 × 64 to 1080 × 1920, and
include diverse objects such as pedestrians, vehicles, trees,
mountains, and animals. The datasets are captured using
various infrared detectors, such as the FLIR Tau 320 and
Infrec R500, among others.

3. RGBT550K Dataset
We further curate publicly available datasets containing
paired RGBT image samples, which are summarized in
Tab. 5. Based on the tasks targeted by these datasets,
they can be broadly categorized into RGBT multispectral
fusion and matching, object detection, semantic segmen-
tation, saliency object detection, crowd counting, object
tracking, and other applications. Among these, RGBT
multispectral object detection is one of the most actively
researched areas, with the largest number of open-source
datasets. Object tracking datasets typically offer the high-
est volume of frame-level samples, often exceeding 100,000
frames. Thus we avoid allowing any single dataset to dom-
inate an excessive proportion and temporal sampling is ap-
plied to RGBT video datasets to eliminate highly similar
frames.

As shown in Fig. 4, the scenes captured in these datasets
vary significantly depending on the intended task. Datasets
for RGBT multispectral object detection and semantic seg-
mentation primarily focus on outdoor environments, such
as those encountered in drone monitoring, surveillance,
and autonomous driving. In contrast, RGBT multispectral
saliency object detection datasets include a mix of indoor
and outdoor scenes, featuring more diverse target objects.
Notably, most RGBT datasets encompass both daytime and
nighttime conditions, leveraging the complementary char-
acteristics of RGB and thermal modalities to enable more
robust perception in complex environments.

To consolidate the samples from all the aforementioned
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Num Name Year Frames Classes Resolution Sensor Bit Application

1 AAlart Data [68] 2018 771 pedestrian, vehicle 640×513 Catherine MP LWIR 8 HE Mil., Surv.

2 AAU RainSnow [6] 2018 4.5K vehicle 640×480 not specified 8*HE Mil., Surv.

3 All-Ther [5] 2022 20K vehicle, pedestrian 640×512 1280×1024 notspecified 8*HE Mil., Surv.

4 ASL-TIR [45] 2014 4381 human, cat,horse 324×256 FLIRTau 320 8/16 HE/RAW Mil., Surv.

5 Bird [3] 2022 302 bird 416×416 notspecified 8*HE Sci.

6 BIRDSAI [8] 2020 160K human, animal 640×480 FLIR Tamarisk640 8HE Sci.

7 BU-TIV[63] 2014 35K 19K motorcycle, runner, car, etc. up to 1024×1024 FLIRSC8000 16RAW Mil., Surv. Sci.

8 CAMEL [18] 2018 44.5K biker,vehi cle, pedes trian 336×256 FLIRVuePro 8*HE Mil., Surv.

9 CSIRCSIO [2] 2014 3650 vehicle, human, dog,bird 640×480 Uncool.µ-bol 8*HE Mil., Surv.

10 CVC-09 [51] 2013 10K pedestrian 640×480 notspecified 8HE Mil., Surv.

11 Indoor-OutdoorIR[41] 2007 400 person, vehicle, etc. 384×288 Thermotek Miricle 8*HE Mil., Surv.

12 InfAR [16] 2016 3.6M person 293×25 GUIDIR IR300 8*HE Mil., Surv. Sci.

13 LR-MR-HRFIR [49] 2020 3063 person, animal, vehicle, objects up to 640×512 Axis, FLIR 8HE Mil., Surv.

14 LSI [43] 2013 20K pedestrian 32×64 164×128 IndigoOmega 14RAW Mil., Surv.

15 LSOTBTIR [39] 2020 600K animal, vehicle, aircraft, etc. not specified notspecified 8HE Mil., Surv.

16 LTIR [7] 2015 11K rhino, human, horse, etc. up to 1920×480 FLIR 8/16 HE/RAW Mil., Surv.

17 MSFocus [73] 2013 420 building, car, corridor, etc. 640×480 Canon FLIR 8HE Industrial

18 Mov-Tar [55] 2021 150K vegetation, building 640×512 notspecified 8HE Mil., Surv.

19 PTB-TIR [38] 2019 30128 vehicle, pedestrian up to 1280×720 8dif.cams. 8HE Mil., Surv.

20 RGB-NIR [9] 2011 477 building, mountain, tree, etc. 1024×768 CanonT1i 8*HE Sci.

21 RIFIR [40] 2014 20K pedestrian 640×480 not specified 8*HE Mil., Surv.

22 Roboflow-P [47] 2022 13K person 640×512 notspecified 8*HE Mil., Surv.

23 SCUT-FIR [65] 2019 211K pedestrian 720×576 NV628 8HE Mil., Surv.

24 SG-Ship [46] 2017 24K ship 1080×1920 Canon70D 8*HE Mil., Surv.

25 Soccer [15] 2018 3000 people 1920×480 AXIS Q1922 8HE Mil., Surv.

26 TIDOC [4] 2021 6892 car, cat, pedestrian 300×400 1080×1440 FLIR SeekThermal 8*HE Mil., Surv.

27 Transformer [42] 2021 255 transformer, induction motors 320×240 Dali-tech T4/T8 8*HE Industrial

28 Valle-Aerial[17] 2020 110 road,car 336×256 Zenmuse XT 8*HE Mil., Surv.

29 Anti-UAV410 [22] 2023 438K small object - - - Mil.

30 IOD-Video [70] 2022 141K gas 320×240 - 8HE Industrial

31 TIVID [10] 2024 159K road, car, pedestrian 320×240 - 8HE Denoising

Table 4. To construct the Thermal480K dataset, we extensively collect unimodal thermal data through a comprehensive review of publicly
available datasets.

datasets, we create the RGBT3M dataset. However, the
RGBT3M dataset exhibits several limitations, including 1)
imbalance across datasets, 2) temporal redundancy, and 3)
low image quality. To address these issues, we rebalance
the sample proportions across datasets, remove temporally
redundant and low-quality samples, and conduct meticulous
preprocessing. This process yields the RGBT550K dataset,
a high-quality, large-scale, and diverse dataset encompass-
ing a wide range of scenarios, tasks, lighting conditions,
resolutions, and object categories.

4. Sample Filtering

Due to the presence of a certain proportion of low-quality
samples across datasets, manually filtering the RGBT3M
dataset, which comprises hundreds of thousands of sam-

ples, would be highly time-consuming. Therefore, we seek
to automate the removal of low-quality samples using ob-
jective evaluation metrics. Among the various image fusion
metrics we evaluate, Structural Similarity Index Measure
(SSIM) demonstrate superior performance.

As illustrated in Fig. 5, samples with SSIM values be-
low a certain threshold predominantly exhibit the following
issues: 1) Low information density: For example, scenes
consisting entirely of the sky without additional objects. 2)
Extremely low-light conditions: RGB images appear com-
pletely black, rendering target objects indistinct. 3) Thermal
scenes with limited dynamic range: In the absence of sig-
nificant heat sources, thermal images lack sufficient contrast
and clarity.

We determine that such low-quality samples could de-
grade the self-supervised learning process. Consequently,
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Number Name Year Video/Image Number of samples Train Test Scene Type Day/Night Publication

Image Fusion

and Matching

1 multispectraldata [13] 2021 video 53 - - Indoor/Outdoor Both ICRA

2 CVC-15 [11] 2016 image 100 - - Urban Scenarios Both -

3 CVC-lghd [1] 2015 image 44 - - Driving Both ICIP

4 RoadScene [64] 2020 image 221 - - Driving Both AAAI

5 MSRS [56] 2022 image 1444 - - Driving Both Inf. Fusion

6 TNO [57] 2014 image 60 25 21\- Military Scene Both Data Brief

7 CATS [58] 2017 image 1400 - - Indoor/Outdoor Both CVPR

8 M3FD [35] 2022 image 4200 - - Overcast Both CVPR

Object Detection

9 VEDAI [48] 2016 image 1210 - - Aerial Both HAL

10 KAIST [24] 2015 video 95k 7601 2251 Driving Both CVPR

11 LLVIP [27] 2021 image 15448 12025 3463 Surv. Night ICCVW

12 MFNet [21] 2021 image 1569 785 784 Driving Both IROS

13 FLIR [14] 2018 image 10228 8862 1366 Driving Both NeurIPS

14 CVC14 [19] 2016 image 8518 7085 1433 Pedestrian Scene Both MDPI

15 MAVD [61] 2021 image 113282 - - Driving Both CVPR

16 DroneVehicle [71] 2022 image 28439 17990 10339 Drone Both TCSVT

17 SMOD [12] 2024 image 8676 - - Driving Both arXiv

18 DVTOD [54] 2023 image 4358 - - Indoor/Outdoor Both TIV

19 RGBT-Tiny [67] 2024 video 93K (115videos) - - Indoor/Outdoor Both arXiv

Semantic

Segmentation

20 PST900 [50] 2020 image 894 606 288 Subterranean Both arXiv

21 Freiburg Thermal[62] 2020 image 20647 20583 64 Outdoor Both arXiv

22 RoadScene-seg [66] 2022 image 1326 1105 221 Road Scene Both NeuroComp.

23 SemanticRT [25] 2023 image 11371 6830 4541 Urban Scene Both ACM MM

24 MVSeg [26] 2023 video 53k (738 videos) 452 286 Driving Both CVPR

25 FMB [36] 2023 image 1500 - - Driving Both ICCV

Salient Object

Detection

26 VT821 [29] 2017 image 821 - - Indoor/Outdoor Both IGTA

27 VT1000 [59] 2020 image 1000 - - Indoor/Outdoor Both TMM

28 VT5000 [60] 2022 image 5000 2500 2500 Indoor/Outdoor Both TMM

29 VI-RGBT1500 [52] 2022 image 1500 - - Indoor/Outdoor Both TCSVT

30 UAV RGB-T 2400 [53] 2023 image 2400 - - Drone Both TGRS

Crowd Counting
31 RGBT-CC [37] 2021 image 2030 1030 1000 Indoor/Outdoor Both CVPR

32 DroneRGBT [44] 2020 image 3600 1807 1806 Drone Both ACCV

Object

Tacking

33 VT-MOT [72] 2024 video 401068 (582 videos) - - Surv., drone Both arXiv

34 VTUAV [69] 2022 video 1700k (500 videos) - - Tracking Both CVPR

35 RGBT234 [31] 2019 video 116.7k (234 videos) - - Tracking Both Pattern Rec.

36 LasHeR [32] 2021 video 738.8k (1224 videos) - - Tracking Both TIP

37 GTOT [28] 2016 video (50 videos) - - Tracking Both TIP

38 RGBT210 [30] 2017 video (210 videos) - - Tracking Both ACM MM

Others
39 VITLD [20] 2022 image 880 280 400 Indoor/Outdoor Both TII

40 RGB-T-Glass [23] 2022 image 5551 4427 1124 Indoor/Outdoor Both IEEE

41 IRVI [33] 2020 video 24352 (12 videos) 6 6 Monitoring Both ACM MM

Table 5. To construct the RGBT550K dataset, we curate publicly available datasets containing paired RGBT image samples, which cover
a wide range of tasks.

as shown in Fig. 5, we exclude image pairs with SSIM
values below 0.80, retaining only those with SSIM values
above 0.80. These retained samples exhibit superior im-
age clarity, object saliency, and texture features, providing
higher-quality data for self-supervised pre-training.

5. More CMSS Visualization Samples

Given that thermal images lack the color and texture infor-
mation inherent in RGB images, the existence of modal-
ity imbalance leads to an asymmetry in information density
between RGB and thermal modalities. Additionally, un-
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Figure 2. The t-SNE visualization of concatenated RGBT features for object and background regions from different pretrained models.

like ImageNet, the RGBT550K dataset is not object-centric.
Consequently, the random sampling strategy employed by
the MAE tends to allocate excessive attention to regions
with low information density.

To address this, we adopt an information-aware sampling
strategy, leveraging a simple yet effective Cross-Modality
Structural Sparsity (CMSS) metric to evaluate the informa-
tion density across RGBT modalities. In regions of high
information density, RGBT patch embedding pairs exhibit
lower similarity and greater structural variance, resulting in
smaller CMSS values. Conversely, in regions of low infor-
mation density, RGBT patch embedding pairs demonstrate
higher similarity and lower structural variance, leading to
larger CMSS values.

Due to space limitations in the main text, we present
additional CMSS evaluation samples in Fig. 6. Our pro-
posed CMSS metric generalizes well across diverse scenar-
ios (e.g., drone imagery, surveillance, autonomous driving),
varying lighting conditions (daytime and nighttime), and
settings with modality imbalance. This robust generaliza-
tion provides effective guidance for a progressive, easy-to-
hard masking strategy.

6. GMM Estimation Visualization
We visualize the probability density functions fitted by the
Gaussian Mixture Model (GMM) during the initial stages of
self-supervised pre-training. As illustrated in Fig. 7, the pa-
rameters {µk,Σk, πk} estimated by the GMM exhibit min-
imal variation from the 1st epoch to the 20th epoch, fluctu-
ating only slightly within a narrow range. This observation
indicates that the overall CMSS distribution reaches a rela-
tively stable state early in the pre-training process, enabling
the Gaussian Mixture Model to provide a consistent and op-

timal fit for p(m).

7. Feature Visualization Analysis
We first concatenate the thermal and RGB features ex-
tracted by different pre-training models, including Train
from Scratch, Sup.(1K), MAE (1K), and M-SpecGene. In
Fig. 2, we present additional visual analyses of object and
background features. It is evident that the object and
background features derived from models initialized with
random weights are highly entangled. In contrast, our
M-SpecGene model demonstrates significantly greater dis-
criminative capability between object and background fea-
tures compared to the Train from Scratch, Sup. (1K), and
MAE (1K) pre-training models. Statistical analyses con-
ducted on the FLIR, KAIST, and LLVIP datasets further
corroborate this observation. We attribute this improvement
to the GMM-CMSS progressive sampling strategy, which
promotes the learning of object-centric representations and
facilitates the generation of more distinctive features.
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Figure 3. The visualization of the Thermal480K dataset, which covers a variety of resolutions, object types, distances, tasks, and fields of
view.
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Figure 4. The visualization of the RGBT550K dataset, which contains samples from various RGBT multispectral downstream tasks.
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Figure 5. The RGB images are converted to grayscale to compute the SSIM with thermal images. Samples with SSIM values below a
certain threshold predominantly exhibit the following issues: 1) Low information density. 2) Extremely low-light conditions. 3) Thermal
scenes with limited dynamic range.
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Figure 6. More visualization samples of the Cross-Modality Structural Sparsity (CMSS), which serves as a simple yet effective metric to
measure the information density across RGB and thermal modalities.

Figure 7. The visualization of the probability density functions fitted by the Gaussian Mixture Model (GMM) during the initial stages of
self-supervised pre-training.
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