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A. Related Work
Image Inversion: Image inversion transforms a clean image into a latent Gaussian noise representation. Sampling from this
representation enables controlled image editing and reconstruction. Diffusion-based inversion originated with DDPM [15,
28], which progressively add noise to an image. DDIM [32], a deterministic variant of DDPMs, allows for significantly
faster inversion. However, early inversion techniques often lacked sufficient accuracy. Null-text inversion [26] addresses this
limitation by optimizing a null-text embedding, effectively leveraging the inherent bias of the inversion process. Negative-
Prompt-Inversion [25] mathematically derives the optimization process of null-text inversion, thereby accelerating the in-
version process. Direct-Inversion [18] incorporates the inverted noise corresponding to each timestep within the denoising
process to mitigate content leakage.

Image Editing: To maintain the consistency of edited images with the source image, several approaches constrain the
editing results. One strategy, employed by [33, 38, 39], involves tuning additional parameters to inject source image infor-
mation or providing structural control through masks, canny edges, or depth maps. Another prominent approach, stemming
from Prompt2Prompt [13], manipulates attention maps to preserve image structure, as seen in various editing methods [3–
6, 9, 12, 14, 19, 22, 27, 34, 36, 40]. Furthermore, mask-based techniques have proven effective in enhancing both preservation
and editability. For instance, [3, 7, 16, 24] utilize automatically generated masks for more accurate text-guided image gen-
eration. Flow-based image editing methods [1, 2, 11, 21, 23] have demonstrated strong performance in single-turn editing.
Building upon this foundation, RF-Inversion [31] employs a single-objective LQR control framework. FireFlow [10] and
RF-Solver [35] further refine the process by focusing on reducing single-step simulation error through second-order ODE
solvers. Our work addresses the specific challenges of multi-turn editing. We leverage second-order ODEs for accurate
single-step inversion and, crucially, introduce a dual-objective LQR and adaptive attention guidance to maintain coherence
and control across multiple editing steps.

Joseph et al. [17] explored techniques for manipulating images directly within the latent space. ChatEdit [8] and TextBind
[20] leverage the summarization capabilities of LLMs to streamline editing workflows. Similarly, Yang et al. [37] employ
a self-refinement strategy using GPT-4V [29] to support interactive image editing. While these methods enhance editing
efficiency, they underutilize the image generation model’s full potential. In contrast, our work focuses on multi-turn image
editing by directly optimizing the image generation model’s capabilities, enabling consistent edits across multiple iterations
without relying on external language models.

B. Datasets
Since there are no existing datasets for multi-turn image editing, we propose an extended dataset based on PIE-Bench [18] to
facilitate evaluation. This extension allows for testing multi-turn editing while maintaining alignment with existing single-
turn editing benchmarks. PIE-Bench consists of 10 editing types, as outlined below:
1. Random editing: Random prompt written by volunteers or examples in previous research.
2. Change object: Change an object to another, e.g., dog to cat.
3. Add object: add an object, e.g., add flowers.
4. Delete object: delete an object, e.g., delete the clouds in the image.
5. Change sth’s content: dhange the content of sth, e.g., change a smiling man to an angry man by editing his facial expres-

sion.
6. Change sth’s pose: dhange the pose of sth, e.g., change a standing dog to a running dog.
7. Change sth’s color: change the color of sth, e.g., change a red heart to a pink heart.
8. Change sth’s material: change the material of sth, e.g., change a wooden table to a glass table.
9. Change image background: change the image background, e.g., change white background to grasses.

10. Change image style: change the image style, e.g., change a photo to watercolor.
PIE-Bench is a dataset designed for single-turn editing, where each image is paired with an original prompt and an editing
instruction. To extend it for multi-turn editing, we utilize OpenAI’s GPT-4 Turbo to generate additional editing instructions.
Based on the original prompt and the first-round editing instruction, we randomly select one of the ten editing types and
generate five additional rounds of editing instructions for each image. The prompts used for generating editing instructions
are shown in Fig. 1.

C. Technical Proofs
This section provides detailed technical proofs for the theoretical results discussed in this paper.



Figure 1. Prompts for GPT4-Turbo genrating multi-turn editing instrctions.

C.1. Proof of Proposition 1
Proof. The original problem with a single target is formulated as:

V (c) :=

∫ 1

0

1

2
∥c (Zt, t)∥22 dt+

λ

2
∥Z1 −X1∥22

The extended problem considering multiple targets is expressed as:

V (c) :=

∫ 1

0

1

2
∥c (Zt, t)∥22 dt+

n∑
i=1

λi

2
∥Z1 −Xi∥22

Rewriting the extended problem, the sum of squared distances is reformulated as:

n∑
i=1

λi

2
∥Z1 − Yi∥22 =

∑n
i=1 λi

2
∥Z1 − µ∥22 + c

where µ is defined as the weighted average of the targets:

µ =

∑n
i=1 λiYi∑n
i=1 λi

and c corresponds to a constant value, which is irrelevant to Z1. By defining a new target µ and a new weight λ′ =
∑n

i=1 λi,
the extended problem simplifies to:

V (c) :=

∫ 1

0

1

2
∥c (Zt, t)∥22 dt+

λ′

2
∥Z1 − µ∥22

This formulation is structurally identical to the single object LQR problem, where the target Y1 is replaced by µ and the
weight λ is replaced by λ′.



C.2. Solution to LQR Problem
The standard approach to solving an LQR problem is the minimum principle theorem that can be found in control literature.
We follow this approach and provide the full proof below for completeness. The Hamiltonian of the LQR problem is given
by

H(zt,pt, ct, t) =
1

2
∥ct∥2 + pT

t ct. (1)

For c∗t = −pt, the Hamiltonian attains its minimum value: H(zt,pt, c
∗
t , t) = − 1

2 ∥pt∥2. Using the minimum principle
theorem, we get

dpt

dt
= ∇ztH (zt,pt, c

∗
t , t) = 0; (2)

dzt
dt

= ∇pt
H (zt,pt, c

∗
t , t) = −pt; (3)

z0 = y0; (4)

p1 = ∇z1

(
λ

2
∥z1 − y1∥22

)
= λ (z1 − y1) . (5)

From (2), we know pt is a constant p. Using this constant in (3) and integrating from t → 1, we have z1 = zt − p(1 − t).
Substituting z1 in (4),

p = λ(zt − p(1− t)− y1) = λ(zt − y1)− λ(1− t)p,

which simplifies to

p = (1 + λ(1− t))
−1

λ(zt − y1)

=

(
1

λ
+ (1− t)

)−1

(zt − y1).

Taking the limit λ → ∞, we get p = zt−y1

1−t and the optimal controller c∗t = y1−zt

1−t . Since ut(zt|y1) = y1 − y0, the proof
follows by substituting y0 = zt−ty1

1−t .
In conclusion, the formulation with multiple targets can be regarded as a special case of the original single-target Linear

Quadratic Regulator (LQR) problem. In this interpretation, the effective target is a weighted average of the individual targets,
and the effective weight is the sum of the individual weights. This allows for the seamless application of the optimal control
techniques developed for the single-target scenario to be extended to handle the multi-target problem by treating the weighted
average target as the effective target.

D. Pseudo-code for the k-th Turn of Image Editing
To improve reproducibility, the pseudo-code for the k-th turn of image editing is provided in Algorithm 1.

E. Limitations
E.1. Editing Iterations
As shown in Fig. 4, our method effectively preserves the natural appearance of images across multiple editing rounds,
whereas other methods exhibit noticeable artifacts. However, due to limitations in dataset generation, we created only five
rounds of editing instructions. Additionally, errors from ChatGPT restricted our benchmark evaluation to four editing turns.

As a result, we have not yet fully explored the potential of our method across a larger number of editing iterations. As
seen in the reconstruction results presented in this paper, most flow-based inversion methods begin to exhibit significant
semantic drift by the fourth reconstruction. In contrast, our multi-turn reconstruction results demonstrate that even after 10
reconstruction steps reconstruction, our method maintains high-quality outputs.

Since our evaluation was limited to only four editing rounds, a comprehensive comparison between methods remains
incomplete. Moving forward, we aim to extend the multi-turn dataset to support a greater number of editing iterations for a
more thorough evaluation.



Algorithm 1 Multi-turn Editing Denoising ODE

Require: Editing turn k, discretization steps N , target text “prompt”, structured noise Xk
1 , prompt embedding network Φ, Flux model v(·, ·, ·;φ), time

steps t = [tN−1, ..., t0], mask of activated attention map in layer l is ml
t, LQR guidance controller η, λ

Ensure: kth turn edited image Xk
0

1: Initialize vtN−1 = v(Xk
tN−1

, tN−1,Φ(prompt);φ)
2: ∆t = tN−2 − tN−1

3: Xk
tN−1+

1
2
∆t

= Xk
tN−1

+ 1
2
∆t · vtN−1

4: Initialize vtN−1+
1
2
∆t = v(Xk

tN−1+
∆t
2

, tN−1+ 1
2
∆t,Φ(prompt);φ) {Run & Save to GPU Memory}

5: Xk
dual = [(X0

0 −Xk
tN−1+

∆t
2

)+λ((Xk−1
0 −Xk

tN−1+
∆t
2

)− (X0
0 −Xk

tN−1+
∆t
2

))]/(1− tN−1) {LQR guidance, integration of historical data}

6: Xk
tN−2

= Xk
tN−1

+∆t · [vtN−1+
1
2
∆t + η(Xk

dual − vtN−1+
1
2
∆t)]

7: for i = N − 2 : 0 do
8: v̂ti ← vti+1+

1
2
∆ti+1

{Load from GPU Memory & ml
ti−1

guide attention’s reweight & Run}
9: ∆t = ti−1 − ti

10: Xk
ti+

1
2
∆t

= Xk
ti

+ 1
2
∆t · v̂ti

11: vti+ 1
2
∆t = v(Xk

ti+
1
2
∆t

, ti +
1
2
∆t,Φ(prompt);φ) {Run & Save to GPU Memory}

12: Xk
dual = [(X0

0 −Xk
t
i+1

2
∆t

) + λ((Xk−1
0 −Xk

t
i+1

2
∆t

)− (X0
0 −Xk

t
i+1

2
∆t

))]/(1− ti) {LQR guidance, integration of historical data}

13: Xk
ti−1

= Xk
ti

+∆t · [vti+ 1
2
∆t + η(Xk

dual − vti+ 1
2
∆t)]

14: end for
15: return Xk

0 =0

E.2. First Round Editing
LQR-guided methods are highly effective in aligning distributions, particularly in transforming atypical distributions into
typical ones. This capability is essential for maintaining coherence in multi-turn editing. However, in single-turn editing,
LQR guidance can disrupt the original flow matching process to some degree. Consequently, the performance of our method
in the initial editing round is suboptimal. Future work could explore alternative methods to integrate information across
editing iterations.

F. Additional Experiments
In this section, we begin by presenting comprehensive experimental metrics across multiple editing rounds Sec. F.2. Next,

we showcase quantitative results demonstrating that our method is highly effective for multi-turn editing, excelling in both
editability and structure preservation Sec. F.3. Finally, we conduct additional ablation studies to analyze the functionality of
key components.

F.1. Multi-turn Reconstruction
To evaluate long-term performance, we include a 10-turn reconstruction example in Sec. F.1, demonstrating that our method
remains stable with fewer drift issues.

F.2. Quantitative Results for Multi-turn Editing
We utilize CLIP-T [30] to measure image-text alignment, while CLIP-I and structure-distance assess the similarity between
the edited and original images. The FID is employed to evaluate the quality of the generated images. Additionally, since
PIE-bench provides a mask labeling the edited area, we use CLIP-Edit to measure image-text similarity specifically within
the edited region.

Quantitative results are presented in Tab. 1 and Tab. 2. Our method demonstrates a strong balance between content
preservation and editing capability, particularly in the fourth round of editing. Notably, for the FID and structure-distance
metrics, our method maintains stable performance across multiple editing turns, whereas most competing methods exhibit a
continuous increase in both structure distance and FID as the number of editing rounds grows. Furthermore, our multi-turn
approach achieves comparable performance to state-of-the-art flow-based editing methods in the initial rounds and delivers
outstanding performance in later rounds. To comprehensively evaluate overall performance, we compare our method with
baseline methods on fourth-turn editing results. All metrics are normalized to a 0-10 ranking and visualized using a radar
plot, which shows that our method strikes a balance across all metrics.( Fig. 2)
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Methods Round 1 Round 2 Round 3 Round 4
FID Clip-T Clip-I FID Clip-T Clip-I FID Clip-T Clip-I FID Clip-T Clip-I

Ours 2.554 26.19 0.910 4.015 26.56 0.903 5.115 26.81 0.897 5.553 26.83 0.894
RF-Inv. 1.854 24.41 0.928 3.015 24.09 0.919 4.324 24.06 0.909 5.740 24.10 0.904
StableFlow 1.699 23.94 0.940 5.971 23.98 0.932 12.413 23.94 0.914 20.624 24.23 0.899
FlowEdit 0.998 26.28 0.932 3.706 26.34 0.914 8.405 26.36 0.903 14.547 26.70 0.894
RF-Solver 1.450 25.58 0.931 3.419 25.55 0.922 6.603 25.62 0.912 11.581 25.52 0.906
FireFlow 5.579 27.72 0.891 8.279 27.87 0.883 8.405 27.94 0.878 12.375 28.28 0.873
MasaCtrl 1.647 23.98 0.933 4.518 23.80 0.915 7.609 23.91 0.900 10.811 23.80 0.886
PnPInv. 2.222 25.25 0.915 4.927 25.67 0.901 7.703 25.47 0.889 10.262 25.77 0.872

Table 1. Quantitative Results of Multi-Turn Editing. The best results are highlighted in green, while the second-best results are marked
in purple. Our method demonstrates a balance between CLIP-I and CLIP-T while achieving the best FID score at the fourth-turn editing.

Methods Round 1 Round 2 Round 3 Round 4
CLIP-edit Structure CLIP-Edit Structure CLIP-Edit Structure CLIP-Edit Structure

Ours 23.596 0.0475 23.120 0.0587 23.294 0.0652 23.021 0.0580
RF-Inv. 21.573 0.0326 21.834 0.0411 21.920 0.0471 21.945 0.0525
StableFlow 21.187 0.0190 21.581 0.0375 21.926 0.0589 22.051 0.0785
FlowEdit 23.393 0.0289 23.378 0.0493 23.237 0.0668 22.941 0.0813
RF-Solver 22.536 0.0249 23.101 0.0359 23.229 0.0488 22.581 0.0611
FireFlow 24.226 0.0780 23.843 0.1040 23.524 0.1240 23.208 0.1420
MasaCtrl 21.073 0.0271 21.557 0.0456 21.621 0.0595 21.776 0.0709
PnPInv. 22.502 0.0218 22.859 0.0424 22.788 0.0580 22.752 0.0692

Table 2. Quantitative Results of Multi-Turn Editing. The best results are highlighted in green, while the second-best results are marked
in purple.
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Figure 2. We rank the performance of our method compared to baseline methods in the fourth round of editing. Our method performs well
in both text similarity and fidelity to the original image.

F.3. Qualitative Results for Multi-turn Editing
Existing metrics cannot accurately assess image quality. For example, our selected baseline diffusion-based methods pro-
duce noticeable artifacts compared to flow-based methods. However, qualitative evaluations do not always capture these
differences effectively.

To address this, we conduct additional qualitative experiments on both natural and artificial images. The results for natural
image editing are shown in Fig. 3, Fig. 4, while artificial image results are presented in Fig. 5 and Fig. 6. In both categories,
our method achieves a high success rate in image editing. Equally important, our edited images consistently preserve key
features of the original image across multiple editing steps, including color, lighting and background. This balance between
content preservation and editing effectiveness aligns with the quantitative results in Sec. F.2. Artistic paintings are among
the most challenging images to edit and reconstruct. We present full experimental results on multi-turn reconstruction in this
domain, showing that our method can effectively complete the editing process.
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Figure 3. Our method consistently follows the color tone of the original image while achieving the desired editing. The second prompt is
“sitting on a pink flower”, while the third prompt is “with a red ladybug”.
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Figure 4. Quantitative Results on Natural Animals. Our method successfully performs edits without introducing artifacts.
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Figure 5. Quantitative results on artificial images show that our method successfully preserves the background while performing the editing.
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Figure 6. Quantitative results on artificial images show that our method successfully preserves the background while performing the editing.
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